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Abstract

We analyze qualitatively the bending vibrational polyads of the acetylene molecule
(C2H2) in the approximation of the 1:1:1:1 resonant oscillator with axial symmetry
using an effective vibrational Hamiltonian which reproduces bending vibrational
energy levels computed by Michel Herman and coworkers (Herman et al., 2003).
We explain how the classical limit of this quantum system for the total vibrational
angular momentum ` = ζ = 0 is equivalent to a reduced perturbed Keplerian
system on the classical phase space S2×S2, such as the hydrogen atom in exter-
nal electric and magnetic fields in the Kustaanheimo–Stiefel (KS) formalism. In
particular, bending vibrational Nb-polyads of C2H2 correspond to the n-shells of
the perturbed hydrogen atom. Within this approach, using the techniques devel-
oped for the Keplerian systems and methods of the qualitative theory, we account
concisely for all series of bifurcations of the classical nonlinear normal modes
and their manifestations in the quantum energy level spectrum described by our
predecessors Tyng and Kellman (2006). In addition to local oscillator approxima-
tions near stable equilibrium points, notably the local modes discussed by Rose
and Kellman (1996); Jacobson et al. (1998, 1999a,b), we introduce two new global
integrable approximations, and confirm them by constructing respective two reg-
ular complementary lattices of quantum states within one Nb, `-polyad. From the
stratification of the phase space, we uncover the geometrical meaning of the corre-
sponding new good quantum numbers and define new kind of wavefunction local-
ization in the neighborhood of two spheres S2 in the four-dimensional space. Fur-
thermore, we use our two approximate lattices to uncover quantum monodromy
of the system through the evolution of an elementary quantum cell along a closed
path in the images of the nearly integrable energy-momentum maps.
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1 Introduction: qualitative analysis of atomic and molec-
ular dynamics

The qualitative approach to the study of differential equations and, in particular, of clas-
sical dynamical systems was initiated by Henri Poincaré at the end of the 19-th century,
and was developed further by Lyapunov, Hopf, Andronov, Smale, Kolmogorov, Moser,
Arnol’d, and many others (Abraham and Marsden, 1978). Introduction of their ideas
to other fields went along with catastrophe theory, singularity theory (Arnol’d, 1992;
Gilmore, 1993), and, later, with the concept of topological phase transitions (Thouless,
1998).

In general, we begin the qualitative analysis of an effective molecular Hamilto-
nian with the construction of the corresponding classical limit system. The subsequent
study of this system involves all methods of the qualitative theory of classical dynam-
ical systems (Arnol’d, 1989), specifically the bifurcation theory (Arnold, 1983), the
idea of topological phases (Bernevig, 2013), and others. We return to the quantum sys-
tem by establishing the correspondence between the qualitative characteristics of the
eigenspectrum and eigenfunctions of the quantum system and their modifications un-
der variation of one or several control parameters, and the specific qualitative features
of the respective classical limit system, such as the phase space topology, equilibria
and relative equilibria, their bifurcations, critical and singular fibres and their appear-
ance/disappearance under variation of control parameters.

1.1 Most simple systems
It can be argued that one-degree-of-freedom systems with a (smooth) compact phase
space without boundary and a single control parameter are the most simple systems
to analyze qualitatively. In molecules, such effective systems include rotation in an
isolated nondegenerate vibrational state, and two vibration modes in 1:1 resonance
(Zhilinskiı́, 2001). In atoms, we have S1 symmetric perturbations of the hydrogen
atom, such as the quadratic Zeeman system (Michel and Zhilinskiı́, 2001a; Efstathiou
and Sadovskiı́, 2010). In all these cases, the phase space of the model system is the
2-sphere S2 or, equivalently, the complex projective line CP 1 which is diffeomorphic
to S2. The compactness of the phase space means that (for each fixed value of the
control parameter, such as the value of the momentum of the reduced S1 action) the
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number of levels in the corresponding reduced quantum system is finite. The eigen-
states can be computed by diagonalizing the matrix of the quantum Hamiltonian in an
appropriate finite basis. Other advantages of such systems include the possibility to
apply Morse theory to the analysis of classical Hamiltonians H : S2 → R. And the
last, but not the least specific simplifying property of all these one-degree-of-freedom
reduced systems is that energy alone is often enough to separate different dynamics.
Modification, appearance, and disappearance of different dynamical regimes can be
represented by regions in the energy-parameter diagram. Quite often, our parameters
refer to other degrees of freedom which are reduced and described effectively. Thus, in
the above examples, the length of the total angular momentum, the vibrational polyad
number, and the orbital momentum, respectively, are such dynamical parameters, and
the diagram corresponds to the image of the classical energy-momentum map.

The first application of the qualitative approach in molecules was the explanation
of their rotational energy level clusters (Dorney and Watson, 1972; Harter and Patter-
son, 1984). In this case, we study the reduced classical dynamics of a freely rotating
molecule with angular momentum vector J whose length j := ‖J‖ and orientation in
the laboratory coordinate frame are conserved (are first integrals). All other degrees of
freedom, such as vibrations, are accounted for effectively, i.e., are reduced, normalized,
averaged out, etc. The pure rotational molecular Hamiltonian H(J) is a perturbation
of the quadratic rigid body Hamiltonian H0(J) and we can call this system a reduced
nonrigid Euler top. Points of S2 represent orientations of J in the body fixed frame.
In particular, stationary axes of rotation correspond to stationary points of H , i.e., are
equilibria of the system. The value of j serves as a natural dynamical control param-
eter. Quantum levels for each fixed allowed value of j = 0, 1, 2, . . . form rotational
multiplets. Their internal structure, which can be particularly rich and dense in the
case of (nearly) spherical top molecules, is analyzed. Modifications of this structure
are related to bifurcations of stationary axes (Pavlichenkov and Zhilinskiı́, 1985, 1988;
Pavlichenkov, 1993).

Reduced systems on the phase space CP 1 appear in the qualitative analysis of the
internal structure of isolated polyads formed by two (quasi)-degenerate molecular vi-
brations in 1:1 resonance. In this case, all other motions except the two vibrations of
interest are averaged out and/or separated. The analysis is very similar to that in the
case of pure rotations albeit the symmetries of H (and the degrees in J ) can be differ-
ent. In particular, polyads characterized by the polyad quantum number n = 0, 1, 2, . . .
are equivalent to multiplets with j = n/2. The most widely analyzed phenomenon in
these systems is the pitchfork bifurcation leading to the appearance of so-called local
modes and the respective energy level doublets (Lawton and Child, 1979; Jaffé and
Brumer, 1980; Child and Halonen, 1984; Kellman, 1985; Mills and Robiette, 1985;
Hartke et al., 1992).

Among the perturbations of the hydrogen atom by weak homogeneous static elec-
tric and magnetic fields, there is a large class of systems with the reduced phase space
S2 which is obtained after removing both Keplerian and Pauliean S1 symmetries, see
chap. IV.D and V.B in (Efstathiou and Sadovskiı́, 2010) and references therein. Histori-
cally the first system of this kind was the quadratic Zeeman effect, where the qualitative
analysis explained localized states forming quasidegenerate doublets (Herrick, 1982).
Within the one-parameter family of the orthogonal electric and magnetic field perturba-
tions, whose parameter defines the relative strengths of the fields, such doublets appear
very similarly to the vibrational local modes (Efstathiou et al., 2009).

At this point, several remarks may be of interest. It should be noted that the sys-
tems above are obtained by reducing Lie symmetries of different kinds. In the case of
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vibrational polyads and most atomic perturbations, the symmetries are dynamical and
approximate; when we study rotations, the symmetries are geometric and strict. Notice
also that there are typically two approximations made in the study of resonant vibra-
tions and perturbations of the hydrogen atom: the resonance may not exactly be 1:1 and
the polyad integral n is not strictly conserved in the original system and becomes an
integral only for the normal form which is typically divergent. In this respect, polyads
of C2H2 are of “mixed” nature: their polyad symmetry S1 is approximate and dynami-
cal, while the axial SO(2) ∼ S1 symmetry is geometric. We should also mention reso-
nances other than 1:1. They lead to reduced spaces P ∗ that are topologically equivalent
to S2 but have singularities, i.e., these spaces are not diffeomorphic to S2. Examples
include Fermi resonances in molecules, typically between bending and stretching vi-
brations, and a class of perturbations of the hydrogen atom by electric and magnetic
fields skewed to a specific angle, see (Efstathiou et al., 2008) and sec. III.C and V.C
of (Efstathiou and Sadovskiı́, 2010). We will not consider other resonances here since
they do not appear within the limited context of pure bending polyads of C2H2. We
can only mention that a Poisson structure-preserving singular map can make P ∗ into a
smooth S2 and that the latter is sometimes taken confusingly for the actual phase space
of the system.

1.2 Systems with two degrees of freedom
Qualitative analysis has profoundly advanced our understanding of a great number of
fundamental atomic and molecular systems. We would naturally like to consider more
complex systems with intrinsically larger number of degrees of freedom, i.e., with de-
grees of freedom that cannot be separated neither due to strict symmetries nor due to
approximations based on the perturbation theory, averaging, and normalization. Specif-
ically, we may like to study systems with two such essential degrees of freedom and
retain, for simplicity, the compactness of the underlying classical four-dimensional
phase space and the existence of a single control parameter. In molecular and atomic
systems, we encounter phase spaces CP 2 and S2×S2. The former occurs as a reduced
phase space (or polyad space) in the study of vibrational polyads formed by 1:1:1
resonant oscillators (Zhilinskiı́, 1989; Sadovskiı́ and Zhilinskiı́, 1993a), such as triply
degenerate vibrational modes of tetrahedral (CH4) or octahedral (SF6) molecules. The
latter is the classical phase space of all n-shell (or Keplerian) approximations to the per-
turbations of the hydrogen atom and can be traced back to the beginnings of quantum
mechanics (Valent, 2003; Pauli, 1926; Fock, 1935; Bargmann, 1936). As we explain in
this work, S2×S2 is also the classical phase space associated with the quantum reduced
effective Hamiltonian describing bending vibrational polyads of C2H2.

1.2.1 Molecular vibrations. Bending vibrations of acetylene

Vibrational polyads associated with the classical phase space CP 2 were analyzed and
described to a certain detail, see for example (Efstathiou et al., 2003, 2004; Efstathiou
and Sadovskiı́, 2004; Crogman et al., 2007), but applications in molecules were hin-
dered by the lack of molecular systems satisfying the necessary assumptions, specifi-
cally, that these polyads can be separated effectively from all other vibrational modes
and that the polyad approximation is holding for sufficiently high polyad numbers N ,
for which polyads contain many levels and classical limit is feasible. Furthermore, as
some known examples may suggest (Patterson et al., 1981; Sadovskiı́ et al., 2010), such
high polyad numbers are not easy to observe and interpret experimentally.
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In this respect, bending polyads of acetylene H−C−−−C−H give a rare opportunity
to have experimentally accessible system with two degrees of freedom which con-
forms our criteria. These polyads are formed by two doubly degenerate bending vi-
brational modes of C2H2 which transform according to the irreducible representation
±1 of the axial symmetry group SO(2) of this linear molecule. Being in close 1:1
resonance, these modes are strongly interacting and we should consider large polyads
of an SO(2)-symmetric 4-oscillator in (1:1):(1:1) resonance1, while accounting for the
three remaining nondegenerate stretching vibrational modes and the two rotational de-
grees of freedom effectively. As was shown in a number of detailed ground making
studies by Herman and co-authors (Temsamani and Herman, 1995; Temsamani et al.,
1996; Herman et al., 2003; Herman, 2007; Amyay et al., 2016) as well as in other work
going back to Plı́va (1972) with important contributions by Rose and Kellman (1996);
Jacobson et al. (1998, 1999a,b) and more recently by Ding (2004); Tyng and Kellman
(2006); Zhilinskiı́ et al. (2000), these polyads exist and can be described effectively as
isolated from each other and from all other vibrational states up to very high polyad
numbers Nb ≈ 20 with large number (Nb/2 + 1)2 of vibrational components (for
` = 0) and complex internal structure. Note that the SO(2) symmetry implies that we
have two first integrals in the system, the (1:1):(1:1) polyad integral Nb and the vibra-
tional angular momentum ` associated with SO(2). In other words, we have dynamical
Lie symmetry T2. The reduced system that describes internal polyad dynamics has
therefore two degrees of freedom and two parameters n and `. It can be analyzed qual-
itatively and the results can be compared to the rich vibrational energy level structure
of acetylene which is reconstructed quite reliably and fully from the highly detailed
experimental data on C2H2 accumulated over the last forty years (Herman et al., 2003;
Amyay et al., 2016). This explains the continuing interest in the acetylene molecule
(see, for example, the recent work by Tyng and Kellman (2009b,a, 2010); Ma et al.
(2012); Larese et al. (2014)). Michel Herman is one of the key contributors to the ex-
perimental studies of the bending polyads and other vibrational states of acetylene and
it is our great pleasure to contribute this paper to the special issue in his honor.

1.2.2 Perturbations of the hydrogen atom

The internal structure of the n-shells of the perturbed hydrogen atom has been stud-
ied extensively both in theory and experiment, see the recent review by Efstathiou and
Sadovskiı́ (2010). In the classical limit, the shells are described by a reduced dynamical
system with two degrees of freedom and classical phase space S2×S2 equipped with
the standard Lie-Poisson algebra so(3)× so(3). It is obtained from the original physi-
cal system with three degrees of freedom by averaging with regard to the Keplerian S1

action N corresponding to the principal quantum number n and by subsequent fixing
the value of N > 0 as a dynamical control parameter. More technically (Efstathiou
and Sadovskiı́, 2010), the original perturbed system where N is not strictly conserved
is normalized with regard to the Hamiltonian flow of the Hamiltonian vector field XN ,
and the normal form H : S2×S2 → R is truncated at a certain sufficiently high or-
der. The action N becomes first integral of the reduced system with Hamiltonian H
and phase space S2×S2 for each fixed value of N > 0. We should remark, however,
that finding a physical perturbation that preserves the approximate Keplerian dynam-
ical symmetry of the system but removes the internal approximate Pauliean dynami-
cal symmetry S1 of the n-shells and thus makes the n-shell dynamics anisochronous

1Our notation implies that resonances within the parentheses are exact.
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(Fontanari and Sadovskiı́, 2015) may not be all that straightforward. For instance, all
perturbations by static homogeneous fields retain this additional S1 symmetry and we
can continue reducing down to a system on S2.

1.2.3 Kustaanheimo-Stiefel formalism and polyads

Treating perturbations of the hydrogen atom within the Kustaanheimo-Stiefel (KS)
framework (see, for example, sec. IV.A of (Efstathiou and Sadovskiı́, 2010) and ref-
erences therein, and the more recent discussion by van der Meer (2015)) makes this
system most directly and explicitly related to the bending polyad system of C2H2 (with
zero angular momentum ` = 0). In the KS approach, using the singular KS map and
subsequent regularization of the Coulomb potential term, the original physical system
is transformed into a four-dimensional exactly 1:1:1:1 resonant oscillator subject to an
additional “fictitious” exact S1

ζ symmetry, a rotation in the coordinate space R4 with
momentum ζ. The Keplerian symmetry of the original hydrogen atom in three dimen-
sions becomes the S1

n symmetry of the 1:1:1:1 resonant oscillator with momentum n,
and together with the above additional fictitious symmetry it constitutes the symme-
try T2 of the KS system. We observe readily that S1

ζ corresponds directly to the axial
SO(2) symmetry of C2H2 and therefore, ζ is the equivalent of the vibrational angular
momentum `. As for the Keplerian symmetry S1

n, it is equivalent to the polyad sym-
metry of C2H2, albeit in the latter case we allowed for the detuning of two 1:1 modes.
It follows that the shell number n = 1, 2, . . . and the polyad number Nb = 0, 1, 2, . . .
are related as n = Nb/2 + 1. The hydrogen atom system corresponds to the special
value of ` = ζ = 0, while for nonzero ζ we have the so-called “magnetic monopole”
systems. All of them have phase spaces S2×S2, but the radii of the two S2 factors (and,
consequently, their areas and symplectic volumes) differ when ζ 6= 0.

1.3 Results, motivation, and purpose
The studies of bending polyads of C2H2 cited above, all within the detuned resonance
(1:1):(1:1) oscillator model, have shaped our understanding of the dynamics of this
system. Nevertheless, the description of the underlying reduced classical mechanical
system remained incomplete. Most notably, the basic fact that this system has the com-
pact phase space S2×S2 equipped with the standard Lie-Poisson algebra so(3)× so(3)
and is, therefore, equivalent (for zero angular momentum ` = 0) to a perturbed Kep-
lerian system, such as the hydrogen atom in weak external fields, remained unnoticed.
Similarly overlooked went the related fact that the quantum polyad Hamiltonian can
be simply expressed and solved using the components of two angular momenta J1 and
J2 generating the standard quantum Fock algebra so(3)× so(3). With the present work
we correct this shortfall and take immediate advantage of the advanced techniques de-
veloped in the numerous studies of the hydrogen atom perturbations in order to further
the qualitative analysis of bending vibrational dynamics of C2H2.

We show how bending polyads of C2H2 are described as a system on S2×S2, more
specifically, as a detuned (1:1):(1:1) resonant oscillator system reduced with respect to
its T2 symmetry. Accounting for the discrete symmetries of C2H2 and following them
into the reduced classical system, we explain how S2×S2 is stratified under the action
of the resulting discrete symmetry group. The knowledge of this stratification allows an
easier analysis of the respective invariant Hamiltonian functions H : S2×S2 → R and a
better understanding of the nature of particular non-generic constant h-level sets of H ,
such as stationary points (equilibria) and periodic orbits. We express the Hamiltonian
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Figure 1: Energy of classical relative equilibria (solid lines) and quantum energy levels (hori-
zontal dashes) of the bending vibrational subsystem of C2H2 with angular momentum ` = 0 as
functions of the bending polyad quantum number Nb. Opaque circles on the solid lines mark
the instances of bifurcations of relative equilibria. The RE energies are computed using the Ha-
miltonian by Jacobson et al. (1998); quantum energies are taken from (Herman et al., 2003); a
polynomial Nb (a Nb + b) with a = −0.1431 and b = 668.141 is subtracted from all energies.

of Jacobson et al. (1998, 1999b) as a function H on S2×S2 and analyze it. In particular,
we show how the equilibria on S2×S2 correspond to the periodic orbits studied by
Ding (2004); Tyng and Kellman (2006, 2009a, 2010). Specifically, we show that they
are relative equilibria (RE) of the four-oscillator with dynamical symmetry T2, or its
nonlinear normal modes2. We also adjust the parameters of the effective Hamiltonian
for bending polyads in order to reproduce numerical data by Herman et al. (2003) on
quantum bending energy levels, and we demonstrate subsequently in sec. 4 that these
data can be interpreted as forming a rather regular lattice.

Classical RE energies (as function of parameters n and `) define the energy domain
allowed to the quantum system and characterize the internal structure of this domain. In
sec. 3, we compute RE energies for the Hamiltonian of Jacobson et al. (1998, 1999b).
Our results in fig. 1 show how all known bending quantum levels of C2H2 listed in

2The term nonlinear normal mode (NNM) was introduced by Montaldi et al. (1988, 1990). Further
discussion and examples can be found in (Sadovskiı́ and Zhilinskiı́, 1993b; Montaldi and Roberts, 1999;
Efstathiou et al., 2004; Sadovskiı́ et al., 2010). One can also mention local modes Lawton and Child (1979);
Jaffé and Brumer (1980); Kellman (1985); Mills and Robiette (1985) as a particular widely known kind of
NNM, see for example (Kozin et al., 2005; Crogman et al., 2007) and references therein. NNM’s describe
all possible basic vibrational motions of the resonant system with (quasi-)resonant normal modes and so are
indispensable for describing the vibrational dynamics of resonances. They are specific additional periodic
solutions of periods close to that of the (quasi-)degenerate normal modes. The number and stability of
NNM’s depends on the specific nonlinearity and symmetry of the system. Period-preserving bifurcations
can increase their number, change their stability etc. The normal modes themselves become part of the set of
NNM’s. In the presence of Lie symmetries, such as the polyad symmetry S1, NNM’s correspond to specific
orbits of the action of that symmetry and are called relative equilibria (RE).
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(Herman et al., 2003) are indeed contained within this domain. It can be seen that for
low Nb ≤ 6, the system has only four RE. By Morse theory, this is the minimal possible
number on S2×S2. Two of these RE have distinct energies and are characterized by
maximal absolute values of the detuning momentum ν (red lines in fig. 1). They can be
interpreted as bending normal modes and their energies define maximum and minimum
energy accessible to the polyad. Two other RE with ν = 0 are degenerate in energy
(purple line in fig. 1). They are specific bending nonlinear normal modes with maximal
momentum µ, they define “circular” wavefunction localization pattern (Jacobson et al.,
1999a; Ding, 2004; Tyng and Kellman, 2006), and they are equivalent to the motion of
the hydrogen atom with maximal angular momentum L and projection µ = L1 = m =
±n. Subsequent Morse and Hamiltonian stability analysis of these RE on S2×S2 gives
information on the modifications of the internal structure of polyads in fig. 1 due to
cascading bifurcations for 6 < Nb < 14, as was observed and analyzed earlier by Tyng
and Kellman (2006). Of a particular interest may be the fact, also uncovered by Tyng
and Kellman (2010), that the two RE with µ = ±n are complex hyperbolic (focus-
focus) at low Nb < 12. This suggests a potential nontrivial organization of quantum
levels known as quantum monodromy, see especially (Sadovskiı́ and Zhilinskiı́, 1999;
Zhilinskiı́, 2005) and references therein, as well as Efstathiou and Sadovskiı́ (2010).
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energy-momentum map. For the simple integrable model with HamiltonianH(j, k) we compute
classical relative equilibria (filled circles), classical relative periodic orbits (solid blue lines), and
eigenvalues of the corresponding quantum system (filled circles). The actual quantum energies
from (Herman et al., 2003) are marked by red and black opaque circles.

In order to see the Hamiltonian monodromy, we need to deal with an integrable
approximation for the considered system which describes the dynamics of the two-
degree-of-freedom system in the region surrounding the focus-focus singularity. An
integrable approximation provides further classification of quantum states within each
(Nb, ` = 0) polyad through an additional good quantum number j. This can be seen as
adding the third dimension to the combined plot in fig. 1. For low Nb, we came up with
a simple three-parameter integrable model represented in fig. 2. This model reproduces
very well the lattice of bending vibrational states within one (Nb, `) polyad with low
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Nb and the corresponding system of four nonlinear modes. The justification for the
particular choice of the additional integrals of motion j and ν + n − 2j in the study
of the internal structure of bending polyads becomes clearer when we step up Nb. We
have found out that the polyad section in fig. 2 can be continued empirically to very
high Nb if we take the symmetries of the quantum states into account and exploit the
regularity of the corresponding local lattice patterns. This is well illustrated in fig. 3 by
an empirical quantum state lattice for Nb = 14.

However, one such integrable approximation is not sufficient to see the presence
and manifestation of Hamiltonian monodromy in a system which, as we will see, is es-
sentially nonintegrable on a significant open neighborhood of the complex hyperbolic
relative equilibrium surrounded by regular dynamics in the four-dimensional classi-
cal phase space. In section 4, we suggest two different integrable approximations
which are valid near/along the boundaries of the domains of the corresponding energy-
momentum maps. Our two approximations produce two sets of local classical actions
and two corresponding sets of good local quantum numbers for the initial classical and
quantum systems, respectively. At least one of the sets can be used near/along the
boundaries of the image of the energy-momentum map, and the sets can be related in
the domains where they both are valid. Considering a nontrivial closed path along the
boundaries which encircles the image of the region with non-integrable dynamics, we
followed the evolution of classical actions and corresponding elementary cells for the
lattice of quantum states. This allowed us to uncover the monodromy of the system.
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Nb=14 (n=8)

H(j,k) = c + ak + bj(j+1) with c=9124.92, a=56.528, b=6.2344

j in [0,n] and k in [-j,j]

µ= ±n

ν= −n

ν=  n
model

C2H2 g+
g-
u+
u-

Figure 3: Empirical internal structure of the bending vibrational polyad of C2H2 with quantum
number Nb = 14 (n = 8) and angular momentum ` = 0 as a regular lattice in the image of the
hypothetical “Upper Left” classical integral map, see more in sec. 4.5.2. The simple integrable
model with Hamiltonian H(j, k) is represented by classical relative equilibria (filled circles),
classical relative periodic orbits (light gray solid lines), and eigenvalues of the corresponding
quantum system (light gray filled circles). The quantum energies from (Herman et al., 2003)
are marked by opaque circles whose color and additional markup distinguish the four different
symmetry types. The rightmost column shows the convoluted levels of the polyad similarly to
the Nb = 14 column in fig. 1.

On the other side, the energy level pattern shown in fig. 3 clearly exhibits the con-
sequences of the pitchfork bifurcation of the ν = −n RE at the high energy end of the
polyad. According to fig. 1, this bifurcation occurs near Nb = 9. The quantum number
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Nb = 14 is sufficiently large for this classical phenomenon to be reflected in the energy
level structure of the polyad. And indeed, as we can see clearly in fig. 3, the diagonally
(bottom left to top right) running one-dimensional sublattices of 2j + 1 levels become
doubly split towards their high energy end. Like in the case of the µ = ±n RE, our
simple model (pale gray in fig. 3) does not provide the possibility for the bifurcation of
the ν = −n RE either. Nevertheless, it still reproduces fairly well the lattice section as
a whole.

The existence of such regularities at very high bending excitations, essentially up
to Nb = 20, justifies strongly the study of possible integrable approximations, and the
respective description of relative equilibria, of their bifurcations and stability.

2 Bending polyads of acetylene as a system on S2×S2

Acetylene (C2H2) is a linear four-atomic molecule H−C−−−C−H with spatial symmetry
D∞h ∼ Z2×O(2). Small vibrations of the atoms in C2H2 about its linear equilibrium
configuration are separated into stretching and bending displacements that are aligned
with and perpendicular to the symmetry axis C∞, respectively. The symmetry axis is
aligned with the axis of the molecule and is taken as axis z. There are seven vibrational
degrees of freedom. Because the stretching and bending vibrational frequencies are
sufficiently different, we can, in the simplest approximation, ignore the three stretch-
ing modes and consider two doubly degenerate bending modes ν4g (trans, symmetric3)
and ν5u (cis, antisymmetric3). These modes transform according to the doubly degen-
erate irreducible representations Πg and Πu of D∞h which are combinations of the±1
representations of SO(2). We will denote them here as ν′ and ν′′, each with compo-
nents (1, 2) or, equivalently, (x, y). Thus, for example, the coordinate (z1′) will refer to
the first component of mode ν′. Since symmetry makes each mode strictly degenerate,
we have two exactly 1:1 resonant oscillators (cf appendix A) which may perturb each
other. Characterizing the 1:1 oscillators by the total numbers of quanta n′ and n′′ and
the vibrational angular momenta `′ and `′′, bending vibrational basis functions can be
written as products |n′, l′〉|n′′, l′′〉.

The normal mode frequencies ω4 and ω5 in the zero order bending vibrational Ha-
miltonian of C2H2

H0 =
ω4

2

∑
i=1,2

[
(qi′)2 + (pi′)2

]
+

ω5

2

∑
i=1,2

[
(qi′′)2 + (pi′′)2

]
= ω4n

′ + ω5n
′′

are close enough to justify the 1:1:1:1 resonant oscillator model. We rewrite

H0 = (ω4 + ω5) n + (ω4 − ω5) ν, (1)

where the standard 1:1:1:1 harmonic resonant oscillator Hamiltonian is given by

2 n = n′ + n′′ ≥ 0, (2a)

and the detuning term is described by

2 ν = n′ − n′′, where ν ∈ [−n, n]. (2b)

3With respect to inversion; under the reflection σh in the plane orthogonal to the axis of H−C−−−C−H,
the trans mode ν4g changes sign, while the cis mode ν5u remains invariant.
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Note that the factor of 2 in the above definitions of n and ν is introduced in order to
agree with similar definitions in the analysis of the perturbations of the hydrogen atom,
see sec. 2.1. So n corresponds to the atomic principal quantum number.

Quantum states with the same 2n = n′ + n′′, i.e., with the same total number
of quanta, form bending polyads, whose splitting in the H0 approximation equals
2n(ω4 − ω5). These polyads correspond to the atomic n-shells. Polyads are widely
used by spectroscopists to describe quasi-degenerate group of vibrational states. For
references, mathematical aspects, and the discussion of quantum-classical correspon-
dence of polyads see (Pavlov-Verevkin and Zhilinskiı́, 1988; Xiao and Kellman, 1990;
Sadovskiı́ and Zhilinskiı́, 1993b, 1995). Some examples, which use our approach and
techniques, can be found in (Kozin et al., 2005; Crogman et al., 2007; Sadovskiı́ et al.,
2010).

2.1 Perturbed Keplerian systems
Perturbed Keplerian systems, notably the hydrogen atom in weak external electric and
magnetic fields, can also be treated as a four-oscillator system reduced with regard to
the 1:1:1:1 polyad symmetry S1 and additional “fictitious” axial symmetry (Efstathiou
and Sadovskiı́, 2010), i.e., to a 2-torus symmetry T2. This approach is known as the
Kustaanheimo–Stiefel (KS) formalism. We have two commuting first integrals, the
principal (Keplerian) action nKepler and the momentum ζ which are generators of T2.
After reduction, the actual Keplerian system corresponds to ζ = 0 and any nKepler > 0.
Nonzero ζ are possible, but have no physical analogues. (They require a magnetic
monopole potential.)

Note here that we imply atomic units with ~ ≡ 1 throughout the paper and that,
unless required in the concrete context, our notation does not distinguish quantum
numbers from their classical analogues (values of first integrals, classical actions).
In particular recall that the principal quantum number of the hydrogen atom system
n = 1, 2, 3, . . . is strictly positive and that the number of levels in an n-shell is given
by n2. At the same time, the ground state of the isotropic harmonic four-oscillator
corresponds to classical action 2nKepler = 4× (~/2), which suggests that the values of
nKepler and n correspond exactly. On the other hand, the polyads PNb

of this oscillator
with ` = ζ = 0 are labeled by polyad numbers Nb = 0, 2, . . . (only even nonnegative
values are allowed), so that the ground state corresponds to the polyad P0 with Nb = 0,
and therefore, the polyad number Nb = 2(n − 1), the difference between Nb and 2n
being the action 2~ corresponding to the ground state.

There are six quadratic linearly independent polynomials in the KS oscillator vari-
ables (q, p) that Poisson commute with both n and ζ. They describe the dynamics of
the reduced system. The polynomials constitute the components of the eccentricity4

and angular momentum vectors K = (K1,K2,K3) and L = (L1, L2, L3), satisfy
two relations

K ·L = 0 and K2 + L2 = n2 for ζ = 0, (3)

and generate a Lie-Poisson algebra so(4). Note that the amplitude of the classical
angular momentum and the orbital quantum number l are related in the semiclassical
limit as

‖L‖ = L =
√

l(l + 1) ≈ l + 1
2 .

4The vector K is otherwise called after Laplace-Runge-Lenz and has, sometimes, even more names
attached to it, see (Goldstein, 1976, 1975) and (Cushman and Bates, 1997, p. 400)
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Introducing two Poisson commuting angular momenta

J1 = X := (L + K)/2 and J2 = Y := (L−K)/2, (4)

known as Fock vectors, we come to the relations

‖J1‖ = ‖J2‖ = n/2 for ζ = 0 (5)

which show that we have a phase space S2×S2 naturally embedded into R6
K,L. At the

same time, the above so(4) algebra becomes a standard so(3)× so(3). Below we detail
the exact correspondence between these systems and bending polyads of C2H2.

2.2 Dynamical variables of the axially symmetric oscillator in 1:1:1:1
resonance and generators of the T2

n,ζ action
Similarly to the description of the hydrogen atom in the Kustaanheimo–Stiefel (KS)
approach, see, for example, (Sadovskiı́ and Zhilinskiı́, 1998; Cushman and Sadovskiı́,
2000; Efstathiou and Sadovskiı́, 2010), consider Cartesian coordinates q and respective
conjugate momenta p,

q := (q1, q2, q3, q4) and p := (p1, p2, p3, p4), (6)

as well as corresponding complex dynamical variables

z = (z1, z2, z3, z4), where zi = qi + ipi, z̄i = qi − ipi, with i = 1, . . . , 4. (7)

The oscillator or polyad symmetry S1 is defined by the principal action

2 n =
1
2

4∑
i=1

(q2
i + p2

i ) =
1
2
zz̄,

which is the Hamiltonian of the harmonic 4-oscillator in 1:1:1:1 resonance. The axial
S1 symmetry is defined by the momentum

ζ = q1p4 − q4p1 + q3p2 − q2p3. (8)

Because ζ defines simultaneous individual rotations of the (1, 4) and (2, 3) 2-planes of
the configuration space R4

q , bending vibrational coordinates of C2H2 correspond to (6)
as follows

(qx′ , px′) := (q1, p1), (qy′ , py′) := (q4, p4),
(qx′′ , px′′) := (q3, p3), (qy′′ , py′′) := (q2, p2),

(9)

or, equivalently
(z1, z2, z3, z4) := (z1′ , z2′′ , z1′′ , z2′), (10)

and furthermore,

ζ = ζ ′ + ζ ′′, |ζ ′| = `′, |ζ ′′| = `′′, |ζ| = `,

where, following conventional molecular notation, `′ and `′′ are the absolute values of
the vibrational angular momenta in each normal mode ζ ′ and ζ ′′, and ` is (the absolute
value of) the total vibrational angular momentum. At this point, the system becomes
identical to the hydrogen atom in the KS coordinates (Efstathiou and Sadovskiı́, 2010),
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and we rely directly on the earlier results without going into details of how they were
obtained. However, it might be instructive for the reader to recall the lower dimensional
case following the outline in appendix A, while some additional information on the four
dimensional system can be found in appendix B. Rotating5 each canonical plane (qi, pi)
as described in appendix A.3, we achieve a simultaneous diagonal representation of
both ζ and n,

n = 1
4 (+z1z̄1 + z2z̄2 + z3z̄3 + z4z̄4) = 1

2 (n1 + n2 + n3 + n4) , (11a)

ζ = 1
2 (−z1z̄1 − z2z̄2 + z3z̄3 + z4z̄4) = −n1 − n2 + n3 + n4 . (11b)

where

(z1, z2, z3, z4) := (z2′ , z2′′ , z1′′ , z1′) (12)

are the new complex dynamical variables.

2.3 Quadratic polynomial invariants of the T2
2n,ζ action

In addition to the generators n and ζ themselves, the other six quadratic T2
2n,ζ invariant

polynomials are constructed most straightforwardly if we use new generators

2x := n− ζ/2 = n1 + n2 and 2y := n + ζ/2 = n3 + n4 (13)

and apply the usual two-mode definitions for 1:1-resonant polyads [see eq. (A.12) of
appendix A] on each canonical factor space of TR4 ∼ R4

(1,2)×R4
(3,4) in order to define

the Fock vectors (4) with ‖X‖ = x and ‖Y ‖ = y. Polynomials

J1 = X =
1
4

 2(n2 − n1)
i(z1z̄2 − z̄1z2)
−(z1z̄2 + z̄1z2)

 and J2 = Y =
1
4

 2(n4 − n3)
i(z3z̄4 − z̄3z4)
−(z̄3z4 + z3z̄4)

 (14)

were introduced in our earlier work6 on the hydrogen atom perturbations by orthogonal
homogeneous constant electric and magnetic fields (Sadovskiı́ and Zhilinskiı́, 1998;
Cushman and Sadovskiı́, 1999, 2000) and, subsequently, on generic field configurations
(Efstathiou et al., 2007, 2008, 2009). In particular, combining the first components of
(14) according to (4) gives momenta

L1 = 1
2 (−n1 + n2 − n3 + n4) and K1 = 1

2 (−n1 + n2 + n3 − n4) . (15)

Back in the legacy KS variables (6), the K and L vectors in (4) are expressed as

L =
1
2

 2(q2p3 − q3p2)
q2p4 − q4p2 + q3p1 − q1p3

q1p2 − q2p1 + q3p4 − q4p3

 (16a)

and

K =
1
2

(q2
2 + p2

2 + q2
3 + p2

3)/2− (q2
1 + p2

1 + q2
4 + p2

4)/2
−q1q2 − p1p2 + q3q4 + p3p4

−p2p4 − p1p3 − q2q4 − q1q3

 , (16b)

5In order to reproduce the notation of Sadovskiı́ and Zhilinskiı́ (1998); Cushman and Sadovskiı́ (2000);
Efstathiou and Sadovskiı́ (2010), an additional rotation of the plane (1, 4) is required.

6Sadovskiı́ and Zhilinskiı́ (1998) in eqs. (14) and (22) use indices (e, b, p) to distinguish vector compo-
nents in the physical 3-space, meaning b along the magnetic field and e along the electric field; axis b is also
often taken for the vertical (first) axis in the physical three-dimensional space of the hydrogen atom system.
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see, for example, equations (14) and (22) of Sadovskiı́ and Zhilinskiı́ (1998)6. Expres-
sions (16) together with (9) are most useful to explore further the correspondence to
the C2H2 system in sec. 2.2; they are exploited in sec. 2.4.

2.3.1 Relation to the molecular system

We recall from sec. 2.1 that the Keplerian integral n and the length L := ‖L‖ corre-
spond to the principal quantum number n and the orbital momentum l of the hydrogen
atom. On the other hand, for the 1:1:1:1 bending polyads of C2H2 in sec. 2.2, the quan-
tity 2(n − 1) corresponds to the total number of bending quanta Nb in (2a), and |ζ|
gives the total vibrational angular momentum `. Furthermore, polynomials

ν = −K1 and µ = L1, (17)

give, respectively, the detuning (2b) and the difference of the angular momenta of the
two 1:1 resonant bending normal mode subsystems. The fact that the reduced bending
Hamiltonian H is a function on S2×S2 implies, among other things, that the typical
system has four relative equilibria (RE, see footnote 2). We discuss these implications
in more detail later in sec. 2.4.2.

2.3.2 Nonzero vibrational angular momentum `

While we focus in this paper primarily on the ζ = 0 case, we can notice that eqs. (13)
imply that systems with nonzero |ζ| = ` have a classical phase space S2×S2 whose x
and y factors have different respective radii (n ± `/2). Furthermore, studying, as it is
customary in molecular applications, the whole subsystem with ` = |ζ| > 0 requires
considering the disjoint union

(S2×S2)ζ=−` ∪ (S2×S2)ζ=+`.

Reversing symmetry operations (see sec. 2.4) map points between the disjoint compo-
nents of this union. Classical dynamics is, of course, confined to one of the compo-
nents, but quantum eigenstates with ζ = ±` are degenerate in energy and they can be
seen as stationary combinations of rotating waves with ζ = ` and ζ = −`, i.e., as de-
localized between the components. The number of doubly degenerate quantum states
for arbitrary ζ = ` 6= 0 can be expressed as [(Nb + ζ)/2 + 1][(Nb − ζ)/2 + 1].

2.3.3 Integrity basis

Any T2
2n,ζ-invariant function C4

z → R can be expressed using six T2
2n,ζ-invariant poly-

nomials (14) or (16) and two parameters n ≥ 0 and ζ ∈ [−n, n]. This produces a
function R6

(X,Y ) → R, and by (5) or (13), a function on the reduced phase space
(S2×S2)n,ζ . In particular, we may consider power series in all these quantities and
classify the terms of the series according to their combined degree in (X,Y , n, ζ), so
that, introducing a formal smallness parameter ε, all terms of the same degree s can be
considered to be of order εs. Such formal series are obtained after normalizing in C4

z

with respect to the Hamiltonian flow of 2n. The molecular Hamiltonians used by spec-
troscopists to describe bending polyads of C2H2 are already in this normalized form
truncated to some degree smax, see sec. 2.5.

Expressions using (X,Y ) for degrees s > 1 cannot, obviously, be unique because
these six variables are related algebraically by quadratic restrictions (5) or (13) defining
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the embedding of S2×S2 in R6. To construct such expressions uniquely for any degree
s > 1, we use the integrity basis (see (Michel and Zhilinskiı́, 2001b,a) and (Efstathiou
and Sadovskiı́, 2010)). It can be shown (see appendix B.2) that this basis for the T2 in-
variants has six principal (denominator) and two auxiliary (numerator) invariants, all of
degree 1 in (X,Y ;n, ζ), and there is one auxiliary invariant of degree 2. Furthermore,
these invariants should be constructed in a certain way: we must use the Casimirs n and
ζ (or their linear combinations) as two principal invariants, while the remaining four
include two of the three components of X and Y each. Thus, the principal invariants
(cf appendix A.5) can be chosen as

‖X‖, ‖Y ‖, X1, X3, Y1, and Y2,

with the corresponding auxiliary invariants

X2, Y3, and X2 Y3.

Then the ring of all T2-invariant polynomials can be represented as

R(‖X‖, ‖Y ‖, X1, X3, Y1, Y2) • {1, X2, Y3, X2Y3}, (18a)

or, equivalently, recombining linearly its principal invariants, as

R(n, ζ, ν, µ, X3, Y2) • {1, X2, Y3, X2Y3}. (18b)

Here R is a free module generated multiplicatively by principal invariants, while the
degree in the auxiliary polynomials from {} is one. Note that in order to express
concrete molecular bending vibrational Hamiltonians of C2H2, the additional discrete
symmetry G8 of the reduced system (sec. 2.4) should be taken into account and the
integrity basis (18) should be modified accordingly (Appendix B.2).

2.4 Residual discrete symmetries and stratification of S2×S2

The spatial symmetry group7 of C2H2 is D∞h. Combining it with time reversal or,
more concretely, momentum reversal T : (q, p) 7→ (q,−p), we obtain the full symme-
try group D∞h ∧ T of the original 4-oscillator system. Reduction removes the contin-
uous component C∞ ∼ S1 ∼ SO(2) of this group: the image of D∞h ∧ T under the
T2 symmetry reduction map is an order eight Abelian group G8 which is isomorphic
to an abstract group Z2 × Z2 × Z2 and to the point group D2h. We give its characters
in table 1. Note that G8 has an order four spatial subgroup G4 = {1, σ, i, C2}; its other
operations are reversal8, they involve T and toggle the sign of the symplectic form and
the direction of the flow of all Hamiltonian fields. Such operations can be used along
with the spatial operations to study the Hamiltonian H of the system as a G8 invariant
function (for example, to find additional constraints on the number, position, and type
of stationary points of H), to understand the stratification of the phase space S2×S2,
but they are less useful in the analysis of the dynamics on S2×S2. G4 is of particular
importance to the quantum analogue system whose eigenstates transform according to
the irreducible representations of G4 and are labeled g± or Ag/Bg and u± or Au/Bu.

7We use Schönflies notation for the groups of transformations in R3 which are subgroups of O(3), see
their discussion in (Landau and Lifshitz, 2002, Chap. XII).

8Reversal properties in R8
q,p and R6

X,Y are reciprocal. To verify, consider the action of operations in
table 1 on X and Y . So the operation C2 : (X, Y ) 7→ (−Y1,−Y2, Y3,−X1,−X2, X3) interchanges
the two factor spheres and rotates them by π about axis 3. This operation is, clearly, nonreversal.
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Table 1: Characters of the symmetry group G8 and its action on the T2-invariant variables (11)
and (16). Irreducible representations Γ are denoted similarly to those of the isomorphic point
group D2h. Notation for the elements of G8 corresponds to the action of the corresponding
elements in the preimage Gθ

8 on the original variables (q, p). The last row gives invariant two-
dimensional manifolds of the G8 action on S2×S2 for ζ = 0 whose stabilizer is the order two
subgroup of G8 corresponding to the class in the first row, see sec. 2.4.1.

Γ 1 C2 T T2 i σ Ti Tv variables
Ag 1 1 1 1 1 1 1 1 K1, n, ν
B1g 1 1 −1 −1 1 1 −1 −1
B2g 1 −1 1 −1 1 −1 1 −1
B3g 1 −1 −1 1 1 −1 −1 1 L1, ζ, µ

Au 1 1 1 1 −1 −1 −1 −1 K2

B1u 1 1 −1 −1 −1 −1 1 1 L3

B2u 1 −1 1 −1 −1 1 −1 1 K3

B3u 1 −1 −1 1 −1 1 1 −1 L2

Space S2×S2 S2 S2 T2 4pt S2 S2 T2

The last column of table 1 gives the action of G8 on the T2-invariant polynomials (11)
and (16), and, as a consequence, on S2×S2 ⊂ R6

K,L. Below we explain how this action
was derived.

Strictly speaking, G8 belongs to the reduced system. The preimage of G8 is a
continuous one-parameter family of order-8 subgroups Gθ

8 ⊂ D∞h∧T with θ ∈ [0, π)
which act on the dynamical variables of the full system in sec. 2.2. For our purposes,
we can consider any concrete member of this family. Specifically, we can take G0

8

generated by the reflection σ := σxz
v in the plane xz (a representative of the class σv

of D∞h), the spatial inversion i, and the time reversal T . The other four nontrivial
operations in G0

8 are

C2 := Cy
2 = σxz

v ◦ i, Tv = T ◦ σxz
v , Ti = T ◦ i, and T2 = T ◦ Cy

2 .

The action of G0
8 on the vibrational dynamical variables of the full system in sec. 2.2 is

summarized in table 2. It follows directly from the definition of the normal vibrations
ν4 and ν5 of acetylene. Using the correspondence (9) between the vibrational normal
mode variables and the KS coordinates (6) together with the explicit definitions of
all quadratic T2

2n,ζ invariants (11) and (16), we derive the following transformation
properties of these variables under the generators of G0

8 and the action of G8 in table 1.

variables σ i T
n, ν or K1 + + +
ζ, µ or L1 − + −

L2 + − −
L3 − − −
K2 − − +
K3 + − +

Since the reduced phase space S2×S2 is naturally embedded in R6 with coor-
dinates (X,Y ), we can subsequently uncover (in sec. 2.4.1) the action of G8 on
R6

K,L ⊃ S2×S2 for any fixed nonzero (n, ζ) and the resulting stratification of S2×S2.
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Table 2: Action of the discrete symmetry group G0
8 on the bending vibrational dynamical vari-

ables of acetylene in sec. 2.2; operations in G0
8 are explained in sec. 2.4. The C2H2-variables,

their symmetry (u, g) with respect to spatial inversion i, and the corresponding KS variables
used by Sadovskiı́ and Zhilinskiı́ (1998) and in the later work (Efstathiou and Sadovskiı́, 2010;
Efstathiou et al., 2009) appear in columns C2H2 and KS, respectively; in all subsequent columns,
the + or − signs indicate whether the variable remains invariant or changes sign.

Variables Symmetry operations in the group G8

C2H2 KS Type 1 σ i C2 T Tv Ti T2

q4x q1′ q1 g + + + + + + + +
p4x p1′ p1 g + + + + − − − −
q4y q2′ q4 g + − + − + − + −
p4y p2′ p4 g + − + − − + − +

q5x q1′′ q3 u + + − − + + − −
p5x p1′′ p3 u + + − − − − + +
q5y q2′′ q2 u + − − + + − − +
p5y p2′′ p2 u + − − + − + + −

Knowing the strata on S2×S2 helps greatly in the analysis of the equilibria of the re-
duced system, i.e., the T2-relative equilibria of the original 4-oscillator, corresponding
to the stationary points of the G8-symmetric reduced Hamiltonian H : S2×S2 → R.

2.4.1 Stratification of S2×S2 for ζ = 0

We can specify points on S2×S2 using coordinates (K,L) = (K1,K2,K3, L1, L2, L3)
in R6 and assuming that K and L satisfy (3), or, alternatively, using the linear combi-
nations (X,Y ) and the respective relation (5). We describe invariant manifolds of the
G8 action on S2×S2 whose stabilizers (or isotropy groups) G are different subgroups
of the total symmetry group G8. Note that the abelian group G8 ∼ Z2 × Z2 × Z2 has
subgroups of order 2, 4, and 8 (the group itself). In particular, each class of conjugated
elements (each column) in table 1 corresponds to just one element which defines a Z2

subgroup, e.g., {1, i}. For each stabilizer G ⊆ G8 the invariant manifold consists of all
points which are simultaneously invariant (map to itself) with respect to all nontrivial
elements of G. The (union of) G-invariant manifold(s) can contain points with higher
isotropy group G′ such that G ⊂ G′ ⊆ G8. The stratum of type G is obtained after
excluding all such points.

Isolated fixed points (poles). From the rightmost column of table 1, we can see
immediately that the two points9 (±n, 0, 0, 0, 0, 0) with ν = ∓n and L = 0 satisfy-
ing (3) are fully symmetric (their stabilizer is the whole of G8). Furthermore, since
K1 is the only fully symmetric component of (K,L), any small deviation from point
(±n, 0, 0, 0, 0, 0) in S2×S2 breaks (lowers) its isotropy symmetry G8. So it follows
that points with ν = ±n are isolated in their stratum which consists precisely of these
two points. It is worth recalling that maximum |ν| corresponds to maximum detuning
and that therefore points with ν = n and ν = −n represent the limits of pure normal
modes ν′ (or ν4) and ν′′ (or ν5), respectively.

9Tyng and Kellman (2009a,b, 2006) seem to call fully symmetric points with K1=n and K1=− n as
B and A, respectively; they do not analyze and make use of symmetries.
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We can also see that the two points (0, 0, 0,±n, 0, 0) with maximal |µ| = n are also
isolated. These points are interchanged by operations C2 and σv and form a stratum
consisting of one two-point orbit of G8 with stabilizer {1, i, T2, Tv}, an order-4 reversal
subgroup of G8. The points |µ| = n lift to relative equilibria of the T2 action, or
nonlinear normal modes with maximal difference of vibrational angular momenta `′

and `′′. As was understood essentially by Jacobson et al. (1999a) and later by Ding
(2004); Tyng and Kellman (2006), such modes correspond to “circularly polarized”
combinations of the original normal modes.

Note that the existence of the precisely four isolated fixed points can be seen as
the consequence of the presence of the i element10, which rotates both X and Y si-
multaneously about axis 1 by π. As can be understood from visualizing the action of
such rotation on each 2-sphere factor of S2×S2, the action of {1, i} ⊂ G8 has four
fixed points with maximal absolute values of either ν or µ which can be called poles.
To obtain the poles algebraically, we can see from the i column in table 1 that their
defining equation is K2 = K3 = L2 = L3 = 0. Together with (3) it gives

K1L1 = 0 and K2
1 + L2

1 = n2

satisfied in four points {K1 = ±n, L1 = 0} ∪ {K1 = 0, L1 = ±n}. Any small
departure from a pole breaks its {1, i} isotropy and therefore, poles are isolated.

It is interesting to consider briefly how the poles extend to the case of nonzero
vibrational angular momentum ` = |ζ|. When ζ 6= 0, the two fully symmetric points
and ν = ±n form naturally two pairs with ζ = ±`, while at same time, the pair {L1 =
±n, K1 = 0} turns into four points splitting into two pairs11 {L1 = ∓n, ζ = ±l} and
{L1 = ±n, ζ = ±l}.

Two-dimensional invariant manifolds with stabilizers of order 2. The topology of
the invariant manifolds of the G8 action on S2×S2 (for ζ = 0) whose stabilizers are
order-two subgroups of G8 are listed in the last row of table 1. It turns out that except
for {1, i}, all other nontrivial subgroups of G8 stabilize precisely one invariant two-
dimensional subspace of S2×S2, either a 2-sphere or a 2-torus. For example, the second
column of table 1 tells that the {1, C2} invariant manifold is a sphere S2. Indeed, we
can see that all C2 invariant points (K,L) obey K3 = L1 = L2 = 0. Satisfying
restrictions (3), we obtain the two-sphere

S2×S2
∣∣
K3=L1=L2=0

= {(K1,K2, 0, 0, 0, L3);K2
1 + K2

2 + L2
3 = n2} = S2.

Similarly, we uncover the topology of the {1, T2} invariant manifold by combining its
defining equation K2 = L2 = 0 with (5) and obtain equations

X2
1 + X2

3 = Y 2
1 + Y 2

3 = n2/4

which define a two-dimensional torus T2 = S1×S1.

Invariant circles S1. We have examined subgroups of order 2 and 8 (the group itself).
It remains to find invariant manifolds for stabilizers Z2 × Z2 ⊂ G8 of order 4. From

10Our notation of the group elements in table 1 follows their original action on the bending vibrational
normal mode coordinates q′1,2, p′1,2, q′′1,2, p′′1,2 of C2H2. In regard to the induced action on R6

X,Y , this
notation becomes somewhat confusing. Thus, contrary to what it may imply literally, the i element is a
simultaneous rotation in R3

X and R3
Y and not an inversion which it originally was in R4

q .
11It is likely that Tyng and Kellman (2009a,b) call one pair C and the other D.
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σv , T , Tv

T2 , Ti , Tv

σv , T2 , Ti

C2 , T , T2

G8

Figure 4: Invariant circles S1 of the G8 group action on S2×S2 including all one-dimensional
strata (colored lines) and fully symmetric zero-dimensional stratum (opaque circles), see table 3.

Table 3: Invariant circles S1 of the G8 group action on the reduced phase space (S2×S2)n,ζ=0

Restriction Stabilizer Definition figs. 4, 5

K3 = L = 0 {1, C2, T , T2} K2
1 + K2

2 = n2

K2 = L = 0 {1, σv, T , Tv} K2
1 + K2

3 = n2

K3 = K2 = L1 = L2 = 0 {1, C2, Ti, Tv} K2
1 + L2

3 = n2

K3 = K2 = L1 = L3 = 0 {1, σv, T2, Ti} K2
1 + L2

2 = n2

the total of seven candidates, we can exclude the three containing {1, i} because they
will stabilize only isolated fixed points. Considering the four other stabilizers, we find
that each is an isotropy group of a manifold of dimension one, and that this manifold
has the topology of a circle. The resulting full description of the four invariant circles12

of the G8 action on S2×S2 can be found in table 3.

Intersections of invariant manifolds. Strata. Residual group action. We should
now determine how various low-dimensional G invariant manifolds with G ⊆ G8

fit together in the four-dimensional compact space S2×S2. Each stabilizer of order
4 has two order 2 subgroups which can in turn be stabilizers of 2-manifolds. This
means that the invariant manifolds have common points, i.e., they intersect. First of
all, we note that the totally symmetric poles with |K1|=n are the intersection of all
low-dimensional invariant manifolds, namely the four circles S1, four spheres S2, and
two tori T2. Thus, as illustrated in fig. 4, the four invariant circles in table 3 intersect
at the two poles. Furthermore, six different pairs of invariant circles are related to
six different two-dimensional invariant manifolds (table 1, last row). So each circle
belongs to three two-dimensional invariant manifolds, two spheres S2 and one torus
T2, while each two-dimensional invariant manifold contains two circles. The spheres
are drawn schematically in fig. 5. It follows that the four invariant spheres intersect
pairwise on a circle. Each of the two two-dimensional tori T2 with stabilizers T2 and
Tv intersects all four spheres, specifically, two spheres on each of the two invariant
circles it contains. The poles {|K1|=n} are common to both tori, and furthermore, the
tori also intersect each other at the two isolated points with maximal |L1| = n which
otherwise stay apart from all other manifolds.

The residual group action on the circles in table 3 is formally equivalent to the
action of the C2 point group on a circle {(x, y) ∈ R2;x2 + y2 = 1} with the G8

invariant poles on the vertical axis C2. Removing the poles, we obtain the stratum
S1 \ {|K1| = n} which consists of two-point orbits. For example, the stratum with

12Tyng and Kellman (2009a,b, 2006) call them “grand circles”.
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Figure 5: Two-dimensional invariant manifolds of the G8 action on S2×S2 (cf table 1, bottom
row) and their intersection with higher symmetry strata, see table 3 and sec. 2.4.1.

stabilizer {1, C2, T , T2} has orbits with

K1 = n sin θ, K2 = ±n cos θ, with − π/2 < θ < π/2.

The residual group action on each of the spheres is formally equivalent to the action of
the C2v ∼ Z2 × Z2 point group on a two-dimensional sphere {(x, y, z) ∈ R3;x2 +
y2 + z2 = 1} with the G8 invariant poles on the vertical axis C2 and the two invariant
circles S1 lying in the symmetry planes.

2.4.2 G8-invariant Morse functions on S2×S2

We can naturally assume that the Hamiltonian of the reduced system H : S2×S2 → R
is a Morse function: a smooth function without degenerate stationary points. Such
function remains stable under small deformations due to the change of its parameters
and can be considered as generic. The topology of S2×S2 imposes certain restrictions
on H (Michel and Zhilinskiı́, 2001a). Notably, H should have at least four stationary
points. The simplest Morse function H has exactly four stationary points. To con-
form with topology, these points must include an absolute maximum and minimum
of Morse indices 4 and 0 and Hessian signatures (+,+,+,+) and (−,−,−,−), re-
spectively, and two index-2 points with signature (−,−,+,+). In a dynamical system
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with Hamiltonian function H , the two former points are, necessarily, stable (elliptic-
elliptic, ee) equilibria, while several possibilities exist for the Hamiltonian stability
of the two (−,−,+,+) points, which can be either hyperbolic-hyperbolic, elliptic-
elliptic, or complex hyperbolic, with the frequencies of the linearization near these
points (see sec. 3.1) being imaginary, real, or complex.

Stratification of S2×S2 under the action of G8 imposes further restrictions. Any
G8-invariant Morse function should have stationary points at the isolated fixed points of
this action, and furthermore, points with µ = ±n are equivalent, i.e., the value of H at,
and the stability of these points are exactly the same. Combining with the topological
requirements, we conclude that the simplest G8-invariant Hamiltonian function H on
S2×S2 can have four stationary points, a maximum and a minimum at the poles with
ν = ±n, and a pair of equivalent index-2 points at the poles with ν = ±n. Because
all stationary points are located on (isolated) critical orbits of the group action, such
function is called perfect. So we have two elliptic RE and a pair of equivalent RE,
whose stability remains to be investigated (sec. 3.1).

More complex systems of stationary points can be obtained after bifurcations of
these initial four points. The typical bifurcations are also affected by stratification.
Thus we should anticipate various pitchfork bifurcations at the G8-invariant poles {ν =
±n} which break generically one of the three Z2 factor groups of G8. This means that
the new stationary points would depart from the pole on one of the four invariant circles
with stabilizer Z2 × Z2 (cf fig. 4).

Table 4: Parameters (cm−1) of the effective vibrational Hamiltonian used to fit spectroscopic
data on bending vibrational levels of C2H2 by Jacobson et al. (1998)

Parameter Value cm−1 Parameter Value cm−1

ω4 608.657
ω5 729.137
x44 3.483 y444 −0.03060
x45 −2.256 y445 0.0242
x55 −2.389 y455 0.0072
g44 0.677 y555 0.00955
g45 6.670
g55 3.535
S45 −8.574 r445 0.0304
r45 −6.193 r545 0.0110

2.5 Bending vibrational Hamiltonian of C2H2

The quantum vibrational Hamiltonian

Hbend = H0 + Hdiag + VDD1 + V` + VDD2 (19)

with numerical values of parameters in Table 4 used by Jacobson et al. (1998) and
other spectroscopists13 to fit their data on the bending vibrational levels of C2H2 is
defined implicitly through its matrix elements. We can recover the classical analogue
of (19) using the correspondence of the quantum creation-annihilation operators a+

13This Hamiltonian goes back to Plı́va (1972), who introduced the explicit matrix elements, and it was
used repeatedly later by Temsamani and Herman (1995); Temsamani et al. (1996) with minor improvements.
See also (Ding, 2004).
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and a defining matrix elements of (19) and complex dynamical variables z̄/
√

2 and
z/
√

2, see appendix A.6. In addition to the zero order harmonic Hamiltonian (1)

H0 = ω4(n−K1) + ω5(n + K1),

higher order diagonal terms in (19)

Hdiag = x44(n′)2 + x45 n′n′′ + x55(n′′)2

+ g44(`′)2 + g45 `′`′′ + g55(`′′)2

+ y444(n′)3 + y445(n′)2n′′ + y455 n′(n′′)2 + y555(n′′)3

can be easily rewritten in terms of n and ν in (2), (15), (17), and (11), and

ζ = `′ + `′′, µ = (`′ − `′′)/2,

where we assume consistent signs of `′ and `′′. To order 2 we obtain

Hdiag = (x44 + x45 + x55)n2 + 2(x44 − x55)n ν + (x44 − x45 + x55)ν2

+ (g44 + g45 + g55)(ζ/2)2 + (g44 − g55) ζ µ + (g44 − g45 + g55)µ2 (20)
+ . . .

From the definition of the first nondiagonal term (Darling-Dennyson, DD1)

〈n′, l′|〈n′′, l′′| V̂DD1 |n′ − 2, l′〉|n′′ + 2, l′′〉 =
S45

4

√
(n′ − l′)(n′ + l′)(n′′ + 2 + l′′)(n′′ + 2− l′′) (21)

in (Jacobson et al., 1998, p. 125), parameterizing

VDD1 = S45HDD1, (22a)

and comparing to (A.15), we see immediately that

ĤDD1 = a1′a2′a
+
1′′a

+
2′′ + a+

1′a
+
2′a1′′a2′′ , (22b)

and that its classical analogue is

HDD1 = 1
4 (z1′z2′ z̄1′′ z̄2′′ + z̄1′ z̄2′z1′′z2′′) = 1

4 (z4z1z̄3z̄2 + z̄4z̄1z3z2) . (22c)

The same result (22b) follows from the expression for the matrix element of V̂DD1

S45

√
n′2n

′
1(n
′′
1 + 1)(n′′2 + 1)

in terms of 1-oscillator numbers n′1, n′2, n′′1 , and n′′2 . The correspondence of HDD1

and ĤDD1 is exact because all monomial factors in ĤDD1 commute. Note also that the
conjugate term (c.c.) is added automatically to have the symmetric matrix element.

Similarly, the so-called “`-resonance” or “vibrational `-doubling” term

〈n′, l′|〈n′′, l′′| V̂` |n′, l′ ± 2〉|n′′, l′′ ∓ 2〉 =
R45

4

√
(n′ ∓ l′)(n′ ± l′ + 2)(n′′ ± l′′)(n′′ ∓ l′′ + 2) (23)
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which leaves n′ − n′′ unaltered, can be parameterized as V` = R45Ĥ` where

Ĥ` = a+
1′a2′a1′′a

+
2′′ + a1′a

+
2′a

+
1′′a2′′ (24a)

with the exact classical analogue

H` = 1
4 (z̄1′z2′z1′′ z̄2′′ + z1′ z̄2′ z̄1′′z2′′) = 1

4 (z4z̄1z̄3z2 + z̄4z1z3z̄2) . (24b)

Since Jacobson et al. (1998) use high order corrections such that

R45 = r45 + r445(n′ − 1) + r545(n′′ − 1), (25)

the complete analogue of their `-coupling term is

V` = (r45 − r445 − r545) H` + (r445 + r545) nH` + (r445 − r545) νH` . (26)

The last off-diagonal term of Jacobson et al. (1998) is defined by

〈n′, l′|〈n′′, l′′| V̂DD2 |n′ − 2, l′ ∓ 2〉|n′′ + 2, l′′ ± 2〉 =
R45 + 2g45

16

√
(n′ ± l′)(n′ ± l′ − 2)(n′′ ± l′′ + 2)(n′′ ± l′′ + 4). (27)

Introducing

V̂DD2 =
R45 + 2g45

4
ĤDD2, (28a)

which after substituting (25) gives

V̂DD2 =
r45 − r445 − r545 + 2 g45

4
ĤDD2

+
1
4
[
(r445 + r545) n + (r445 − r545) ν

]
ĤDD2,

(28b)

we can see that

ĤDD2 =
[
(a+

1′)
2(a1′′)2 + (a+

2′)
2(a2′′)2 + c.c.

]
, (28c)

with the exact classical analogue

HDD2 =
1
4

(
z̄21′z

2
1′′ + z̄22′z

2
2′′ + c.c.

)
= 1

4

(
z̄24z

2
3 + z̄21z

2
2 + c.c.

)
. (28d)

Note, however, that replacing quantum operator ĤDD2 in (28b) for its classical ana-
logue (28d) is ambiguous because ν and ĤDD2 do not commute. We can verify directly
that the nondiagonal terms (22c), (24b), and (28d) Poisson commute with n and ζ, and
that, therefore, they are T2

2n,ζ invariants14. Consequently, these terms can be expressed
as polynomials in K and L using the integrity basis (18) or, more specifically, its fully
symmetrized version (see appendix B.2). We obtain

HDD1 = 2 (X3Y3 + X2Y2) = 1
2 (L2

3 + L2
2 −K2

2 −K2
3 ) = 1

2ξ, (29a)

H` = 2(X2Y2 −X3Y3) = 1
2 (K2

3 −K2
2 − L2

3 + L2
2), (29b)

HDD2 = 2(X2
2 −X2

3 + Y 2
2 − Y 2

3 ) = K2
2 −K2

3 + L2
2 − L2

3. (29c)

14The invariance can be also verified directly using expressions (A.3) and (A.6).
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Starting with parameters in (Jacobson et al., 1998), we have computed parameters
of the effective bending Hamiltonian (19) written in terms of our integrity basis with
19 adjustable parameters and adjusted these parameters in order to reproduce quantum
energy levels tabulated by Herman et al. (2003). In our fit, we used complete set of
numerical data for all 545 levels with Nb ≤ 10 and all possible ` = ζ, and achieved
the standard deviation of 0.05 cm−1. Given that Herman et al. (2003) provide only one
decimal digit, the matching can be considered exact. Our resulting parameters, along
with the corresponding Hamiltonian terms represented in terms of single oscillator
mode creation and annihilation operators, are given in table 5. Table 6 gives an example
of the correspondence between the energies calculated with our parameters in Table 5
and those in (Herman et al., 2003).

Table 5: Parameters (cm−1) of the effective Hamiltonian (19) used to reproduce bending vibra-
tional energy levels of C2H2 in (Herman et al., 2003).

Parameter cm−1 Operator
1337.8242 n
120.33648 k
−8.3286063 a+

2 a+
3 a1a4 + c.c.

−5.7662075 a+
2 a+

4 a1a3 + c.c.
−0.10280552 n a+

2 a+
4 a1a3 + c.c.

−0.10606887 k a+
2 a+

4 a1a3 + c.c.
1.9976205 (a+

3 )2a2
4 + (a+

1 )2a2
2 + c.c.

−0.028191724 n ((a+
3 )2a2

4 + (a+
1 )2a2

2) + c.c.
−0.027675688 k ((a+

3 )2a2
4 + (a+

1 )2a2
2) + c.c.

Parameter cm−1 Operator
−11.655622 n k

3.3069468 k2

−1.1416802 n2

2.7080975 ζ2

−3.0114943 ζ µ
−2.8204543 µ2

0.067089051 n3

0.17006851 n2k
−0.1686278 nk2

−0.06839412 k3

Table 6: Comparison of energies h (cm−1) calculated using the effective Hamiltonian (19) with
parameters in table 5 for the Nb = 6 polyad (second last column) and the numerical data by
Herman et al. (2003) (last column).

Nb ζ sym h cm−1 data
6 0 g+ 4293.1310 4293.1
6 0 u− 4212.8058 4212.8
6 0 u+ 4170.7879 4170.8
6 0 g+ 4124.6383 4124.6
6 0 g− 4086.8834 4086.9
6 0 g+ 4060.0145 4060.0
6 0 u− 4032.7446 4032.7
6 0 u+ 3996.9549 3996.9
6 0 u− 3973.4736 3973.5
6 0 u+ 3960.7863 3960.8
6 0 g+ 3940.2675 3940.3
6 0 g− 3906.1730 3906.2
6 0 g+ 3884.0345 3884.0
6 0 u− 3850.3211 3850.3
6 0 u+ 3819.3235 3919.3
6 0 g+ 3766.0277 3767.0

Nb ζ sym h cm−1 data
6 2 g 4306.8073 4306.8
6 2 u 4224.9183 4224.9
6 2 u 4185.4213 4185.4
6 2 g 4135.0799 4135.1
6 2 g 4099.7227 4099.7
6 2 g 4076.0384 4076.0
6 2 u 4041.5134 4041.5
6 2 u 4005.7029 4005.7
6 2 u 3978.0606 3978.1
6 2 g 3947.3908 3947.4
6 2 g 3911.4735 3911.5
6 2 g 3880.3704 3880.4
6 2 u 3855.5976 3855.6
6 2 u 3819.3650 3819.4
6 2 g 3769.3823 3769.4
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3 Bending relative equilibria of C2H2

The bending vibrational Hamiltonian (19), expressed as a function of (K,L) and dy-
namical parameters (n = Nb/2 + 1, ζ = `) using (20) and (29), can have a number
of equilibrium points on S2×S2 for fixed n = Nb/2 + 1 and ζ = `. For the original
system of four bending vibrations, these equilibria represent relative equilibria lifting
to T2

2n,ζ tori in the original phase space TR4
q,p ∼ C4

z . In this section, we consider the
stationary points of (19) on S2×S2 and study the stability of the respective equilibria as
function of the polyad number n for fixed ` = ζ = 0 following the outline in sec. 3.1.

As explained in sec. 2.4.1 and sec. 2.4.2, there are precisely four isolated fixed
points on S2×S2 in the presence of the G8 symmetry which we called poles. Any G8-
invariant Hamiltonian dynamical system should have equilibria at these points. Fur-
thermore, as our example below in sec. 3.2 shows, it is possible to have the simplest
Morse Hamiltonian function H : S2×S2 → R whose only stationary points lie at these
points. So, naturally, in sec. 3.3, we begin our analysis of the equilibria of the system
with concrete Hamiltonian (19) at the poles. We give the results which are essentially
overlapping with previous studies by Rose and Kellman (1996); Ding (2004); Tyng and
Kellman (2006, 2009a,b, 2010); the computation is explained in sec. 3.2.

3.1 Computing linear stability
The Morse index of the stationary point s ∈ S2×S2 of function H : S2×S2 → R is ob-
tained from the eigenvalues of the Hessian matrix of H at s. The general way to analyze
the linear stability of an equilibrium point s ∈ S2×S2 of the Euler-Poisson dynamical
system on the phase space S2×S2 with Hamiltonian H is as follows: (i) find a tangent
4-plane Ts(S2×S2) with standard symplectic coordinates (qx, px, qy, py); (ii) express
H locally near the origin in Ts(S2×S2) as H(qx, px, qy, py); (iii) compute with this
H the linearized equations of motion near the origin; (iv) find the eigenvalues of the
matrix of these equations; (v) if, additionally, local canonical coordinates are of intrest,
ensure that the transformation to the eigenbasis is symplectic.

The specific fixed position of the poles simplifies the analysis. The plane Ts(S2×S2)
is orthogonal to axis 1, and the components 2 and 3 of X and Y serve as local coordi-
nates. Considering their Poisson brackets at each pole, we have (for ζ = 0)

Pole s on S2×S2 Local symplectic coordinates in Ts S2×S2

K1 L1 X1 Y1 (qα, pα, qβ , pβ) (qx, px, qy, py)
n 0 n/2 −n/2 (K2, L3, L2,K3)/n (X2, X3, Y3, Y2)/(n/2)

−n 0 −n/2 n/2 (L3,K2,K3, L2)/n (X3, X2, Y2, Y3)/(n/2)
0 n n/2 n/2 (K2,K3, L2, L3)/n (X2, X3, Y2, Y3)/(n/2)
0 −n −n/2 −n/2 (K3,K2, L3, L2)/n (X3, X2, Y3, Y2)/(n/2)

It is important to warn that in its simple form, the calculation applies only at the origin
0 ∈ Ts S2×S2. In order to extend the analysis to the neighbourhood of 0 beyond
linearization, the symplectic 2-form ω(K3,K2, L3, L2) should first be flattened at 0.

All interaction terms (29) are large away from the poles, at the “equator”, and can
be immediately rewritten in terms of (qx, px, qy, py), while X1 and Y1 with |X1| ≈
‖X‖ = x and |Y1| ≈ ‖Y ‖ = y are found from (13) by choosing the appropriate
branch of the square root and Taylor expanding in (qx, px, qy, py) at 0.

For stationary points s other than poles, we should first rotate our coordinates
(X,Y ) so that components X̃1 and Ỹ1 of the rotated vectors (X̃, Ỹ ) point at s, and
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then proceed with the analysis as detailed above. Note also that we can work on C4
z ,

thus avoiding having to deal with the nonflat 2-form ω at s ∈ S2×S2. To this end, we
lift s to s̃ ∈ C4

z , pullback H using (4) and (14), and then proceed in Cartesian complex
coordinates (z, z̄). After finding the eigenvalues of the matrix of the linearized Hamil-
tonian equations at s̃, we exclude four zeros that correspond to the directions of the
Hamiltonian flows defined by the first integrals 2n and ζ in (11).

3.2 Example of a G8-invariant Morse Hamiltonian on S2×S2

Let us give a simple example of the analysis of a G8 invariant Morse Hamiltonian
function on S2×S2 for which the system may have complex hyperbolic equilibrium.
Consider, to a factor and a constant, the linear Hamiltonian (1) plus an ε-small quadratic
perturbation. Specifically, consider

H = K1 + ε
(
aH` + b L2

1/2
)
, with a2 + b2 ≤ 1

and H` defined in (24). We can see from (4) that momentum K1 induces a linear Ha-
miltonian S1 flow on S2×S2 which amounts to a simultaneous opposite sense rotation
on each factor sphere of S2×S2 about its axis 1. Such rotation has four fixed isolated
points which we called poles in sec. 2.4.1. The poles lie on the axis of rotation where
the absolute values of |X1| and |Y1| in (13) are maximal, and where all other compo-
nents of X and Y vanish, i.e., where |X1| = ‖X‖ = x and |Y1| = ‖Y ‖ = y. For
sufficiently small ε, they are the only equilibria of the system with Hamiltonian H .

The K1 = ±n equilibria of our example system continue from the minimum and
maximum of H0 and for small ε, they remain stable (elliptic). At the equivalent points
with L1 = ±n, the eigenvalues are

±(εn
√

a2 − b2 + i) and ± (εn
√

a2 − b2 − i).

So for any |a| > |b| ≥ 0 these equilibria are complex hyperbolic. Otherwise, they
are stable, and for small ε, they have frequencies of opposite signs. In particular, for
a = b = 0, the frequencies are ±1.

The above system of equilibria conforms to the Euler characteristics of S2×S2 (cf
sec. 2.4.2). In fact, H0 and its ε-small perturbation H are the simplest Morse functions
on S2×S2 with the minimum number of stationary points, similar to the “height” func-
tion X1 : S2 → R, which is the simplest Morse function on S2 with one maximum and
one minimum.

3.3 Analysis of the full C2H2 Hamiltonian starting at the poles
At low n, the zero order H0 of the reduced bending Hamiltonian (19) dominates, and
the only equilibria of the system lie at the poles of S2×S2, cf sec. 3.2. The value of (19)
at the poles is a function of n and ζ which defines the domain of classically allowed
energies as shown in fig. 1. With regard to the original system, the respective relative
equilibria (RE) correspond to its most basic vibrational modes. Specifically, the sta-
ble RE with ν = −n and ν = n correspond to the antisymmetric ν5u and symmetric
ν4g normal modes at the upper and lower end of the energy spectrum, respectively
(see fig. 1). The pair of RE with |µ| = n and energy close to the minimal energy is
hyperbolic unstable. This RE is a specific “precessional” (Rose and Kellman, 1996)
nonlinear normal mode, a resonant combination of the two normal modes giving maxi-
mal absolute value of the vibrational angular momentum projection on the H−C−−−C−H
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Table 7: Two-dimensional (pitchfork) bifurcations of G8-invariant equilibria at poles with |ν| =
|K1| = n, see figs. 1, 4, and sec. 3.3.1. For each bifurcation, we point to the invariant circle
from table 3 on which new equilibria depart. The circles are characterized by their stabilizers
and the non-zero (K, L) component which emerges in addition to K1. The third column (type)
gives the new Hamiltonian stability of the pole equilibrium. (Recall that Nb = 2(n− 1).)

ncrit Energy cm−1 K1 Type Invariant circle
5.262 7420.104 n ee→eh K3 {1, σ, T , Tv}
4.422 5634.479 −n ee→eh L3 {1, C2, Ti, Tv}
5.397 6936.850 −n eh→hh L2 {1, σ, T2, Ti}
7.571 9907.990 −n hh→eh K2 {1, C2, T , T2}

axis. At larger n, the terms of order 2 in (19) become more important, and we observe
a transition from the “normal mode” structure of H0 to the polyad structure defined by
the nonlinear terms in H1. As we increase n, this transition manifests itself through
cascading pitchfork bifurcations at the normal mode poles (fig. 1) which we describe
below in sec. 3.3.1, and the Hopf bifurcation of the precessional RE (sec. 3.3.2).

3.3.1 G8-invariant equilibria with |K1| = 1

The two G8-invariant equilibria at the poles with |K1| = n undergo a number of
Hamiltonian pitchfork bifurcations in a close sequence. One bifurcation happens at the
K1 = 1 pole (at the upper energy end), while three others occur at the K1 = −1 pole
(near the lower energy end), see table 7. Each time, one of the Z2 symmetry subgroups
of G8 ∼ Z2 × Z2 × Z2 is involved (broken), and each time the bifurcation can be
regarded as a two-dimensional event involving one of the two degrees of freedom of
the near equilibrium dynamics. These bifurcations and the new equilibria they create
can be found easily by exploiting the stratification of S2×S2 under the action G8, see
sec. 2.4.1. Recall from fig. 4 and table 3 that there are four invariant circles crossing
at each of the G8-invariant pole. The pair of the new equivalent stationary points of H
which are created in a pitchfork bifurcation at either G8-invariant pole depart on the
S1 circle whose stabilizer Z2 × Z2 corresponds to the symmetries retained by the new
equilibrium points.

Table 7 lists also the new Hamiltonian stability of the pole equilibrium and this
allows to reconstruct the phenomenon as a whole. Originally, at low n, both the K1 =
n and K1 = −n poles are stable (elliptic-elliptic, ee). So, when they first bifurcate,
they become unstable (elliptic-hyperbolic, eh) in the direction defined by the respective
invariant circle, and the pair of new stable (ee) equilibria depart on this circle. In other
words, we have a supercritical (or local) Hamiltonian pitchfork bifurcation. The energy
of the new stable paired equilibria becomes, respectively, the maximal and minimal
energy of the system at given n. In the quantum system, this is reflected by energy
level doublets which form near each end of the spectrum, see fig. 1.

After that, the K1 = −n equilibrium undergoes a second supercritical bifurcation
and becomes hyperbolic unstable (hh) in both degrees of freedom, sending out a pair
of (eh) equilibria. And finally, a third bifurcation, now subcritical, turns the stability of
this point back to (eh). So we end up having precisely one pair of additional equilibria
on each invariant circle in table 3 and 7. Rose and Kellman (1996); Jacobson et al.
(1999a); Tyng and Kellman (2006) call the corresponding new modes as local and
anharmonic, and interpret the respective vibrational motion of C2H2. Since the periods
of all these RE are close to that of the Hamiltonian flow defined by the polyad integral
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2n, they all fall into the category of nonlinear normal modes.

3.3.2 Twin equilibria at poles with |L1| = 1

To look for possible one degree of freedom bifurcations at the L1 = n pole and its
symmetric twin L1 = −n on S2×S2, we can simply search for real roots of the deter-
minant of the Hessian of H|L1=n. In this way we can verify that, no such bifurcations
happen, at least not within the reasonable interval of the values of n covered by our
model Hamiltonian. Checking for four-dimensional events that involve both degrees of
freedom is more involved. We compute the eigenvalues of the matrix of the linearized
equations of motion at L1 = n using (K3,K2, L3, L2)/n as standard symplectic coor-
dinates (see sec. 3.2). It turns out that for n < 7, the eigenvalues are complex, while for
n > 7 they are imaginary. The bifurcation which occurs15 at n = 7.0635 (Nb ≈ 12.1),
see the mark on the |L1| = n curve in fig. 1, is, therefore, likely to be a Hamiltonian
Hopf bifurcation16. Our computation showed that at n > 7 the equilibrium becomes
elliptic (ee) with two different frequencies of the same (positive) sign.

Within this simple approach, we cannot determine precisely the kind of the Hopf
bifurcation that happens (because the computation has to extend away from the origin).
We may suppose that it is of the “weak” (subcritical) kind that involves a family of
periodic orbits which is not coming out from the origin L1 = n. These periodic orbits
may be in some way related to the K1 = −n equilibrium or its “children” that are close
in energy and undergo several bifurcations at approximately the same values of n.

In conclusion, it is tempting to remark on an increased level density in the triangle
formed by the L1 = n (purple) and K1 = −n (red) lines for ≈ Nb > 13. This
may indicate two overlapping systems of states. One (smaller) system corresponds to
states localized near the |L1| = 1 equilibrium (it is now elliptic and the dynamics in
its neighbourhood can be approximated by two degenerate anisotropic 2-oscillators, so
that the quantum levels should form two kinds of doublets). The sequences of these
states seem to ascend and end below the K1 = −n line. In other words, if there
was an integrable approximation, we would have an ”island” (like the one in LiCN
(Joyeux et al., 2003) or in the hydrogen atom perturbed in nearly perpendicular static
homogeneous fields with a sufficiently strong magnetic field component (Efstathiou
et al., 2007)).

4 Classification of states within one Nb bending polyad
with ` = 0: third integral j and triangular lattices

The classical dynamical system corresponding to the vibrational polyad Nb > 0 and
` = 0 has two degrees of freedom and the classical phase space S2×S2. Generically,
this system is not integrable, i.e., we do not have an “additional” integral of motion
j which is a function on S2×S2 in involution with energy H . One of our main pur-
poses in this section will be to look for integrable approximations to our system. We
investigate whether an approximate integral j can be used to characterize adequately
the classical dynamics of our system on the whole or on a part of the phase space
S2×S2 within a reasonably large and interesting interval of polyad numbers Nb. We

15For easier comparison to previous results, notably by Tyng and Kellman (2006), we use the parameters
in (Jacobson et al., 1998, 1999a) to compute critical values of n. Using the Hamiltonian that reproduces the
data by Herman et al. (2003) almost exactly gives slightly different values.

16For an introduction on Hamiltonian Hopf bifurcations, see, for example, (Buono et al., 2005).
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will call an approximation global or partial if it covers all or part of the eigenstates of
the corresponding quantum system, respectively. So a global integral j makes possible
to arrange all quantum states with the same fixed Nb and ` into a regular, locally Z2-
equivalent lattice of points in the 2-plane R2 with coordinates given by the values of
H and j. Pulled back to the original system of four bending vibrations (see sec. 2.2), j
becomes a function of (6) that Poisson commutes with energy H and integrals (2n, ζ)
in (11), namely the polyad integral with values Nb + 2 and the vibrational angular
momentum. This is why we call j the “third” integral.

At low values of Nb, the system of n2 quantum energy levels with ` = 0 exhibits a
clear regular behavior, especially so, if we distinguish the four symmetry types g± and
u± of the corresponding wavefunctions, cf. fig. 2. To uncover and describe such regular
patterns of quantum energies at larger Nb, we can search for an additional phenomeno-
logical quantum number, which we expect to interpret subsequently as a “good” quan-
tum number associated with an approximate dynamical symmetry and corresponding
to a classical integral j whose value is approximately conserved. The search can ex-
ploit a number of ideas, namely (a) introducing local quantum numbers corresponding
to local classical actions and extending locally regular patterns of quantum energies
for at least as far as the semiclassical requirements apply, see sec. 4.1; (b) studying
expectation values 〈K1〉, 〈L2

1〉, and others (sec. 4.2); (c) restricting on dynamically
invariant subspaces with nontrivial spatial stabilizers, cf. sec. 2.4.1; (d) constructing
explicit approximate integrals as functions on S2×S2 (sec. 4.3 and 4.4); (e) describ-
ing quantum energies phenomenologically in terms of j and K1, cf. fig. 2 and 3, see
sec. 4.4; (f) applying additional normalization (averaging).

4.1 Extending locally regular lattices with triangular patterns
First of all, we note that starting from one particular quantum state (which can be,
for instance, of totally symmetric type g+), we can reach all other states within the one
chosen Nb, `-polyad through a sequence of excitations/de-excitations of the u− and u+

symmetry types. The u− (de-)excitation steps to a neighbour state which has both sym-
metry types toggled as g ↔ u and [+] ↔ [−] and is closest below or above in energy;
the u+ works similarly but preserves the ± symmetry. These (de-)excitations define a
certain local lattice pattern of neighbour state symmetries that we continue throughout
all our constructions. Note that in the classical analogue system, they correspond to
stepping local classical actions (momenta) I by ~. Their properties are related to the
symmetry properties of the actions. The procedure should reconstruct I as long as the
semiclassical conditions apply locally.

Denoting the number of (de-)excitations of type u− and u+ as n(u−) and n(u+),
respectively, we can represent all states within the polyad by constructing a two-di-
mensional graph with energy as its vertical axis and with a specific linear function of
n(u−), n(u−) along its horizontal axis. Associating the latter function with a recon-
structed momentum M, makes our graph the reconstructed energy-momentum (EM)
lattice. This graph may, naturally, be not unique because of many existing different
sequences of u± (de-)excitations that lead to the same final state.

To make our construction unique, we first consider states that can be obtained from
the highest energy state by a pure sequence of consecutive u− de-excitations. Then,
starting again with the topmost state, we step down once using the u+ de-excitation
and continue by the u− ones. We continue, every time increasing by one the number
n(u+) of initial u+ de-excitations. We call such construction “Upper Left” or “L” for
brevity, and we denote by [nL(u+), nL(u−)] the number of de-excitations required to
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Figure 6: “Upper Left” (left) and “Upper Right” (right), or “L” and “R” triangular graphs
(reconstructed EM lattices) of energy levels of the Nb = 6, ` = 0 bending polyad of
C2H2. Each quantum state is characterized by de-excitation numbers [nL(u−), nL(u+)] and
[nR(u−), nR(u+)], while the horizontal axes use additional quantum numbers nL(u+) −
nL(u−) and Nb − nR(u+) − 3nR(u−), respectively. States of different symmetry types are
marked by different symbols. States within the shadowed domains have different L and R labels;
labeling of all other states is the same.

reach each state from the topmost state. We use the “Left” momentum coordinate

ML = nL(u+)− nL(u−)

as the additional quantum number. For our example polyad with Nb = 6 and ` = 0,
we obtain the triangular lattice in fig. 6, left.

As an alternative “Upper Right” or “R” scheme, consider states which can be ob-
tained from the topmost state by a pure series of consequitive u+ de-excitations. Then,
starting again with the highest energy state, use one u− de-excitation followed by u+

ones, etc. As can be seen in fig. 6, right, this procedure also yields a triangular pattern.
The corresponding de-excitation numbers are denoted as [nR(u−), nR(u+)], and the
particular choice of momentum

MR = Nb − nR(u+)− 3 nR(u−)

makes it easier to see the regularity of the reconstructed EMR-lattice.
Naturally, as we can see in fig. 6, left and right, both reconstructed EML- and

EMR-lattices are quite regular for low Nb = 6. One should be warned, however, that
even for such low Nb, semiclassical conditions may not be valid throughout the com-
plete reconstruction. In fact, they are likely to fail away from the “founding” boundary
of the reconstructed EML- and EMR-lattices, which is the initial sequence of states
along their upper left and upper right boundaries, respectively. So, in particular, the
EML-lattice is unstable near its lower right corner, and its regularity there may rather
be an artifact of the low density of available states than reflecting the actual underly-
ing classical dynamics. So, in general, we can only assume that these lattices cover
a number of the states of the polyad, see more in sec. 4.5. The main interest of our
construction is that, as we will see below, we can follow the same scheme and obtain
similar, rather regular L- and R-patterns for polyads with significantly higher values of
Nb, where “almost chaotic behavior” has been previously believed to prevail largely.
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4.2 Auxiliary quantum numbers and average values
Before extending our analysis to higher-Nb polyads, let us investigate the physical
meaning of the introduced auxiliary “L” and “R” quantum numbers and suggest pos-
sible candidates for the momentum j of the approximate dynamical symmetry. To
obtain the dynamical information on each quantum state labeled within a EML- or
EMR-lattice, we can calculate average values of certain physical quantities and rep-
resent the distribution of these values over the reconstructed EM-lattice of quantum
states. Below we use the simple Nb = 6 pattern in fig. 6 to illustrate the regularities in
this distribution.

We begin with the average values 〈K1〉. Their distribution for the EML- and EMR-
lattices is shown in fig. 7. We can see immediately that the whole set of quantum levels
is split into subsets with nearly constant, almost integer values of 〈K1〉 ∈ [−3, 3]
aligned on almost straight lines so that

〈K1〉 ≈ Nb/2− nL(u−)− nL(u+) for the “Upper Left” choice, (30a)
〈K1〉 ≈ Nb/2− nR(u−)− nR(u+) for the “Upper Right” choice. (30b)

We observe the similarities of the “Upper Left” and “Upper Right” distributions of
〈K1〉. Maximal and minimal values of K1 = ±3 are associated with states of maximal
and minimal energy. These correspond, obviously, to the classical motion localized
near fully symmetric normal mode poles on the S2×S2 phase space with K1 = ±n and
K2 = K3 = ‖L‖ = 0, see sec. 2.4.1 and 3.3. Turning to the distributions of

√
〈L2

1〉
over the triangular EM-graphs in fig. 7, we can see that their maximum lies inside the
lattices. This maximum marks the neighbourhood of the L1 = ±n poles on S2×S2

with ‖K‖ = L2 = L3 = 0. As we saw in sec. 3.3.2, the equilibria at these poles are
complex unstable at low Nb.

After visualizing the average values 〈K1〉 and
√
〈L2

1〉, we can easily relate the “Up-
per Left” quantum numbers [nL(u−), nL(u+)] and the “Upper Right” quantum num-
bers [nR(u−), nR(u+)]. The two average values (and energy) are entirely sufficient to
identify quantum states uniquely and to compare “Left” and “Right” lattices. We give
below the correspondence between [nL(u−), nL(u+)] and [nR(u−), nR(u+)] in a
form valid for an arbitrary Nb rather than for the particular example with Nb = 6 that
we use currently for illustration. The correspondence between the “Left” and “Right”
quantum numbers consists of two rules:

• For n(u−) + n(u+) ≤ Nb/2 both sets of numbers are identical

[nR(u−), nR(u+)] = [nL(u−), nL(u+)]. (31a)

• For n(u−) + n(u+) = Nb/2 + t, where t > 0 we have

[nR(u−), nR(u+)] = [nL(u−)− 2t, nL(u+) + 2t]. (31b)

In fig. 6, the domain where quantum states have different labels in the “Left” and
“Right” versions is highlighted. Note that the −2t shift is responsible for the mon-
odromy which can be computed along a circular path that follows the boundaries of
the energy-momentum graph and transfers between different local lattices in order to
avoid singularities where the lattices are poorly defined (see sec. 4.5.1).
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Figure 7: “Upper Left” (left column) and “Upper Right” (right column) patterns of energy levels
for the Nb = 6, ` = 0 polyad of C2H2, see fig. 6. Average values 〈K1〉 (upper row),

p
〈L2

1〉
(middle row), 〈(j′)2〉 (bottom left), and 〈(j′′)2〉 (bottom right) are given for each quantum state.

4.3 Approximate dynamical symmetries. Angular momenta j′ and
j′′, and associated invariant spheres.

We continue to investigate the nature and the physical origins of the “Left” and “Right”
choices of global quantum numbers. This requires understanding the parallel construc-
tions in the classical analogue Hamiltonian dynamical system on S2×S2.

Starting at the well pronounced global maximum of energy H in both “Left” and
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“Right” definitions, we make sure to begin near an elliptic equilibrium where dynamics
occurs on invariant two-tori labeled by two local classical oscillator actions Iu+ and
Iu− quantizing as ~n(u±)+~/2. The tori corresponding to quantized (integer) actions
form a regular Z2 lattice near the origin of the local action space. Stepping integers
n(u±), we explore this lattice. When we manage to find energy levels that comply
with our n(u±) steps, we extend the lattice, and at the same time, we globalize our
local actions which become actions on a domain D ⊆ S2×S2 foliated by the tori that
we represent by our constructed lattice. If the steps are sufficiently (infinitesimally for
~ → 0) small, we can assure continuity and keep semiclassical conditions satisfied, but
it is more difficult to have smoothness and to exclude multivaluedness (branching). It
follows that we obtain generalized “actions” which are not necessarily, or not globally
smooth momenta (i.e., generators of proper S1 actions) on D. The reduced Euler top
and other systems on S2 with local modes (cf. appendix A) can serve as pertinent
examples. Thus we can introduce a continuous action for the Euler top, a pendular
action k, that allows to label and quantize tori throughout the whole energy span of
the system, from the minimum to the maximum energy, but this action corresponds
neither to the j1 nor to the j3 component of the angular momentum j which are local
actions near maximum and minimum energies. Nevertheless, it might happen that at
least one action in either “Left” or “Right” construction is a global momentum. To
explore this possibility, we can study expectation values of known momenta and pay
particular attention to the founding boundaries of “Left” and “Right” lattices where one
of the constructed actions remains ~-small.

Considering the distribution of 〈K1〉 along the upper left boundary of the “Left”
EM graph, which is formed by states that correspond to the pure u− sequence of de-
excitations in one local “Left” action (fig. 6, left), we can naturally assume that this
sequence constitutes a multiplet of states |k〉 with k = 3, 2, 1, 0,−1,−2,−3 which
transform according to the irreducible representation of the SU(2) or SO(3) group of
rank 3. Let us introduce the corresponding integer quantum number j′, such that for
the maximal j′ = Nb/2 = 3, it gives the value j′(j′ + 1) = 12 of the square of the
corresponding angular momentum j′. In the same manner, we can observe that the
sequence of states forming the upper right boundary of the “Right” energy-momentum
graph can, in turn, be characterized using j′′ = 3 with j′′(j′′ + 1) = 12. We can
further observe, that the sequence of states with single u+ de-excitation form in the
“Left” graph a string of five states one step below the left boundary. We can conjecture
that these states correspond to j′ = 2. And so forth. We can further conjecture that our
lattice reconstructions are reliable as long as j′ and j′′ remain large (close to Nb/2).

Stratification of the classical phase space S2×S2 under the action of G8 (sec. 2.4.1)
gives a clue to the explicit form of j′ and j′′. Among all invariant two-dimensional
subspaces in table 1 and fig. 5, we can single out two spheres whose stabilizers are
spatial (non-reversal) subgroups {1, C2} and {1, σ} of G8. The particular importance
of these isolated spheres is that due to their exceptional symmetry they house self-
contained dynamical one-degree-of-freedom subsystems, and they can, therefore, serve
as a dynamical limit near a one-dimensional boundary of the EM-domain. We can see
from sec. 2.4.1 and table 1 that the spheres are defined as

S2
C2

= S2×S2
∣∣
K3=L1=L2=0

= {(K1,K2, 0, 0, 0, L3); (j′)2 = n2},

S2
σ = S2×S2

∣∣
K2=L1=L3=0

= {(K1, 0,K3, 0, L2, 0); (j′′)2 = n2}.

with
(j′)2 := K2

1 + K2
2 + L2

3 and (j′′)2 := K2
1 + K2

3 + L2
2. (32)
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Furthermore, we can verify on either sphere that the nonvanishing (L,K) components
generate Poisson subalgebras17 so(3) of so(4) with Casimirs (32), and that

j′ := (K1,K2, L3) and j′′ := (K1,K3, L2) (33)

play the role of angular momenta. In other words, after restricting H(L,K) on ei-
ther sphere, we have Euler-Poisson Hamiltonian dynamical systems similar to the one
discussed in appendix A.

It is clear that quantum states that replicate best this restricted dynamics should
be characterized by the maximal values Nb/2 of the norms of the respective angular
momenta j′ and j′′. We can call such states “spherically localized”, and to uncover
them, we can compute the distribution of the respective expectation values 〈(j′)2〉 and
〈(j′′)2〉 of (32), which for Nb = 6 should approach j′(j′ + 1) = 12 or j′′(j′′ + 1) =
12. Results of these calculations for the “Left” and “Right” patterns are shown in
fig. 7. For the “Upper Left” graph we find that j′ is maximal along its left boundary,
and that together with k ≈ K1, they can be “good” quantum numbers corresponding
(after normalization) to the “Upper Left” actions. We can also observe, that states with
maximal 〈(j′′)2〉 lie on the combined right and bottom boundaries of the EML-lattice.
Similarly, for the “Upper Right” graph we conclude that j′′ and K1 play the role of
“good” quantum numbers and are close to the “Upper Right”actions. Furthermore, for
the Nb = 6 polyad, simple approximate relations

j′ ≈ 1
2Nb − nL(u+) and 〈K2

1 + L2
2 + K2

3 〉 ≈ j′(j′ + 1), (34a)
j′′ ≈ 1

2Nb − nR(u−) and 〈K2
1 + K2

2 + L2
3〉 ≈ j′′(j′′ + 1). (34b)

can be given. It can be conjectured that our “Upper Left” and “Upper Right” construc-
tions begin with and work best for states localized near the C2 and σ spheres, respec-
tively. After establishing the relations between [nL(u−), nL(u+)] and 〈K1〉, 〈(j′)2〉,
and between [nR(u−), nR(u+)] and 〈K1〉, 〈(j′′)2〉, we can equally express the mo-
mentum quantum number used to label the horizontal axes of the “L” and “R” graphs:

ML = nL(u+)− nL(u−) = K1 − 2j′ + Nb/2, (35a)

MR = Nb − nR(u+)− 3nR(u−) = K1 + 2j′′ −Nb/2. (35b)

At last, we can also relate the nL(u−) and nR(u+) de-excitation operators to the ladder
operators in the respective j′ and j′′ algebras.

To complete the description, we like to comment briefly on extending our lattice
reconstruction to ` > 0. This can be done straightforwardly, and the resulting lattices
for each ` can be further assembled into the three-dimensional EM lattice for the entire
bending polyad with given Nb as illustrated in fig. 8. Interestingly, as we can see
in this figure, the ` > 0 lattices appear more regular because the low j′, j′′ region
becomes inaccessible to them. The mechanism by which axially symmetric pendular
rotors avoid the region near their unstable equilibrium for large angular momenta might
provide a distant analogy here.

17Notice that unlike X2 and Y 2, the quantities (j′)2 and (j′′)2 do not Poisson commute.
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Nb = 6 polyad
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Figure 8: Reconstructed three-dimensional energy level lattice for the entire bending polyad of
C2H2 with Nb = 6 (n = 4) sliced into two-dimensional lattices with different possible values of
ζ = ` = 0, 2, 4, 6. The slices are obtained using the “Upper Right” quantum numbers. Average
values 〈(j′′)2〉 are displayed for each quantum state. Note that quantum number j′′ takes integer
values in [`/2, Nb/2], so that the maximal value of j′′(j′′ + 1) is 12. The ` = 0 slice repeats
fig. 7, bottom right. The ± states for ` > 0 are degenerate and only g/u symmetries need to be
distinguished.
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Figure 9: Bending vibrational polyad of C2H2 with Nb = 14 (n = 8) and ` = 0 as a regular
lattice in the image of the hypothetical classical integral map (action space plot) obtained with
the simple integrable Hamiltonian H(j, k). Classical relative equilibria (large filled circles),
classical relative periodic orbits (solid boundary lines), and the joint integral spectrum of the
corresponding quantum system (blue filled circles) are shown. Compare to fig. 3.

4.4 Phenomenological integrable SO(4) ⊃ SO(3) ⊃ SO(2) and
SO(4) ⊃ SO(3) models, and their explicit realizations

We return briefly to the phenomenological model Hamiltonian

Hn,ζ(j, k) = c(n, ζ) + a(n, ζ) k + b(n, ζ) j(j + 1) (36)

with j ∈ [0, n] and k ∈ [−j, j], which was announced in sec. 1.3 and illustrated in
fig. 2 and 3 as a simple model which describes remarkably well the internal structure of
bending (n, ζ) polyads. In view of the quality of the approximation that (36) provides,
even for such high polyad numbers as Nb = 14, it calls for a serious scrutiny. This
is an integrable model with dynamical symmetry SO(4) ⊃ SO(3) ⊃ SO(2), or more
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completely, SU(4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2) and respective momenta (n, ζ), j,
and k which are first integrals of the system. Since in such model, the energy H is
function of first integrals, all states of the polyad form a regular lattice in the image
of the momentum map illustrated in fig. 9 corresponding to the energy-momentum plot
fig. 3. The momentum axis in fig. 2, 3, and 9 is given by

M(n, j, k) = n− 2j + k = n− 2j − ν,

and so, assuming k = K1, it is equivalent to ML; the other action (vertical axis) in
fig. 9 is simply k. The image Mn of the classical momentum map in this action space
for given n is a triangular domain in R2 whose vertices correspond to critical orbits of
the system on S2×S2. Specifically, for k = K1, the rightmost vertex represents the two
equivalent poles with µ = ±n where ν = j = 0; the lower left vertex is the image of
the j = ν = n with µ = 0, while the upper vertex (apex) corresponds to the ν = −n
pole with j = n and µ = 0. The boundary ∂Mn can be parameterized as follows. The
upper left side of ∂Mn

γ′n : [−j, j] → R2
M,k : k 7→

(
M(n, n, k), k

)
corresponds to maximal j and connects the K1 = ±n vertices. The two other sides

γ′′n : [−j, j] → R2
M,k : k 7→ (M(n, |k|, k), k) .

correspond to maximal |k| = j. Under the map

Φn,ζ : (j, k) 7→
(
M(n, j, k),Hn,ζ(j, k)

)
,

the domain Mn (for given n and ζ) becomes the triangle-shaped image of the energy-
momentum map, illustrated in fig. 2 and 3.

Assuming concrete k = K1, we can see states along γ′n and γ′′n forming the j′ = n
and j′′ = n multiplets, respectively, and we realize also that the model lattice in fig. 3
does not have monodromy because all four RE’s of the corresponding model system
(vertices of Mn) are stable. Neither can it account for pitchfork bifurcations of normal
mode RE’s with K1 = ±n (see sec. 3.3). So the interpretation of this model and the
relation of its EM diagram to EM graphs in sec. 4 requires further investigation.

Near γ′n, the model (36) corresponds to the “Upper Left” choice of the approximate
quantum numbers with j ≈ j′. However, even there, pitchfork bifurcations shatter all
our naive hopes to keep k = K1 on the list of potential approximate integrals of mo-
tion in a more qualitatively adequate model. On the other hand, given the substantial
detuning term K1 in (20), and the obvious importance of this term at low Nb, where
many states can still be interpreted in terms of normal modes ν4 and ν5, and simply
because K1 is the only nontrivial lowest degree term, see (1), it seems reasonable to
assume that j is in involution with K1. In the resulting integrable approximation, the
energy H depends on first integrals n, ζ, j, and functions18 ξ : S2×S2 → R which
Poisson commute with j but not necessarily with K1. For such a particular hypo-
thetical SO(4) ⊃ SO(3) model, we should examine all possible so(3) subalgebras that
include K1 as one of the generators, and the respective SO(3) subgroups of SO(4). We
can also safely assume that the j2 term in (36) is of the same order as polynomials of

18This situation is typical in one-degree-of-freedom reduced systems on S2 which transit from the normal
modes and a quasi-linear Hamiltonian at low excitations to local modes with a predominantly quadratic
Hamiltonian, see, for example, (Kozin et al., 2005).
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degree 2 in {K,L}. Furthermore, it becomes clear that the integrable approximation
is anisochronous. This is considerably different from the perturbations of the hydro-
gen atom by constant homogeneous external fields (Efstathiou and Sadovskiı́, 2010;
Fontanari and Sadovskiı́, 2015; Fontanari et al., 2016).

Further leads in the search for the concrete form of j come from the consequences
of the presence of the additional discrete symmetry G8 (analyzed in sec. 2.4), namely
the specific geometry of the low-dimensional subspaces of S2×S2 with nontrivial iso-
tropy and the set of G8-invariant polynomials of degree 2 in {K,L}. We have seen
in sec. 2.4.1 that the action of G8 on S2×S2 has two dynamically invariant spheres
with stabilizers C2 and Cs which correspond to the maximal constant value n of j′

and j′′, respectively. Under the flow of any G8-invariant Hamiltonian, these spheres
are foliated into periodic orbits S1 ⊂ S2 ⊂ S2×S2. In an integrable system with the
typical fibre T2, the spheres become critical subspaces foliated into critical fibres S1.
The image of the spheres under the integral map of such system with values (h, j) is
a critical value set in Mn, a one-dimensional external or internal boundary γ. Recall
further that the two spheres intersect at poles {K1 = ±n}. This means that the corre-
sponding critical sets form a closed loop γ′ ∪ γ′′ ∼ S1 in the image Mn of the integral
map. For simplicity reasons, it is plausible that this loop forms, at least partially, the
boundary ∂Mn. In an integrable system, we can, and often do, choose one of the local
actions I so that it remains constant along the part γ ⊂ ∂Mn of the boundary and thus
becomes a global momentum j. All this singles out clearly the momenta j′ and j′′, es-
pecially after we notice that they are Casimirs of the Poisson algebras so(3) generated
by {L2,K3,K1} and {L3,K2,K1}, respectively.

Turning to the quadratic G8-invariants in sec. 2.3 and their particular choice in
sec. 2.5 used by spectroscopists (29), we rewrite

(j′)2 = L2
2 + K2

3 + K2
1 = R−H` and (37a)

(j′′)2 = L2
3 + K2

2 + K2
1 = R + H`, (37b)

with diagonal part

R =
1
2

(
n2 + K2

1 − L2
1 + (ζ/2)2

)
and R̂ = R + n, (37c)

where the additional term in the quantum analogue R̂ accounts for noncommutativity.
We introduce two other tensorial terms

ξ′ =L2
2 −K2

3 = HDD1 − 1
2HDD2 and (38a)

ξ′′ =L2
3 −K2

2 = HDD1 + 1
2HDD2 (38b)

which Poisson commute with (j′)2 and (j′′)2, respectively, but not with K1. It is the
latter terms that can describe pitchfork bifurcations. We realize that any second-degree
Hamiltonian is expressed using either (j′)2 or (j′′)2, and both ξ′ and ξ′′ together with
diagonal terms ζ2, L2

1, and (n, K1)2. So it follows nicely that we can have either “Left”
or “Right” integrable SO(3) approximations with integrals (n, ζ,H) and third integral
j equal to j′ or j′′, and that these approximations have principal perturbations L2

1 and
either ξ′′ or ξ′, respectively.

We can see that both integrable approximations are clearly partial, working for large
j′ and/or j′′ and being not applicable at large |L1|, i.e., in the neighbourhoods of the
twin poles {L1 = ±n}. In the latter neghbourhoods, all integrability is likely to vanish.
This means, in particular, that the respective “corner” of Mn should be disregarded
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Term Parameter cm−1 Term Parameter cm−1

n +1332.0664 K1 +120.34074

(j′)2 5.7630334 n2 −4.1297849
ξ′ −6.1663 nK1 −11.658435
ξ′′ −2.1796779
L2

1 +0.05964887 K2
1 +0.42538738

Table 8: Vibrational bending polyad Hamiltonian of C2H2 of maximal degree 2 in {K, L}
expressed using integral j′ and restricted to ` = 0; compare to table 4 and eq. (36).

as neither approximation can reach there, and that monodromy can be studied only
using two approximations together. Further restrictions on the applicability domains of
these approximations come from the requirement for the perturbation ξ to be small. In
particular, we should require |ξ′′| << (j′)2 in the “Left” case. This brings us at last to
considering concrete parameters in H .

Rewriting the Hamiltonian (19) in terms of j′, ξ′, and ξ′′ gives parameters in table
8. We can see immediately, that the concrete parameters of C2H2 are such that the con-
tibution of the L2

1 perturbation term is anomalously small, while the perturbation by ξ′′

is moderately small as well. This constitutes the truly dynamical symmetry of the sys-
tem. The dynamical symmetry and, additionally, the anomalously small parameter of
the explicit quadratic contribution K2

1 are the reasons for the wide range applicability
of (36) and, in general, of the SO(4) ⊃ SO(3) models based on j′ (“Left” choice). On
the other hand, the j′′ approximation has large perturbation term ξ′, and is essentially
quadratic in K1. This is likely to be one of the reasons why the integrable approxima-
tion which uses j′ works better than the one based on j′′. Further analysis, based on
algebraic normal forms, may be due but goes beyond the scope of our present paper.

4.5 Energy-momentum graph regularity in high Nb polyads
We now extend the two different approximate quantum numbers in sec. 4.2 to high-Nb

polyads. Knowing of the bifurcations at the two poles with K1 = ±Nb/2 (sec. 3.3)
which create local mode equilibria, we cannot expect K1 to correspond much longer
to (one of) our “Left” and “Right” quantum numbers. We can assume, however, that j′

and j′′ can still be used at least near the respective founding boundaries of the “Left”
and “Right” EM-graphs. In other words, we can expect that “Left” and “Right” re-
constructed lattices continue to be based on the states localized near the respective C2-
and σ-invariant spheres, and continue to cover a substantial domain of the phase space
where either j′ or j′′ remain large. We can further assume that the “Left” and “Right”
numbers provide two overlapping charts of this domain, with correspondence given by
(31). In sec. 4.5.1, we exploit the resulting partial regular energy-momentum two-chart
lattice in order to uncover quantum monodromy of our system.

In sec. 4.5.2 and 4.5.3, we move to even higher polyads. At the lower energy end
of the graphs for these polyads, we observe that the construction becomes quite com-
plicated and even ambiguous. This is quite likely related to the fact that the structure
of polyads with Nb ≥ 14 becomes complicated due to several bifurcations occurring in
the low energy region. In particular, it is possible that the non-local Hamiltonian Hopf-
like bifurcation creates a new leaf (or “island”, cf. Joyeux et al. (2003); Efstathiou et al.
(2007)) of the local energy-momentum map which should certainly complicate signif-
icantly the lattice of quantum states. With regard to future research, one possible way
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Figure 10: “Upper Left” (left column) and “Upper Right” (right column) energy-momentum
graphs for the Nb = 12, ` = 0 polyad of C2H2. Average values 〈K1〉 (top and middle rows) and
respective quantum numbers [nL(u−), nL(u+)] and [nR(u−), nR(u+)] (bottom row) are given
near each quantum state. Quantum monodromy is manifested by the evolution of the elementary
cell through the lattice of quantum states (middle and bottom rows), see sec. 4.5.1.

to facilitate the analysis of the polyad structure for large Nb may be by using quantum
calculations with the same Hamiltonian but with smaller effective value of ~, in other
words, by increasing the density of states while preserving the system of stationary
points and the energy-momentum leaves of the original classical analogue system.

4.5.1 The Nb = 12 polyad. Quantum monodromy

The polyad with Nb = 12 is the last before cascading bifurcations (fig. 1, sec. 3.3)
would likely complicate EM lattice reconstructions. Both reconstructed EML and
EMR lattices in fig. 10 are quite regular and are relatively easy to build after confirm-
ing the steps in sec. 4.1 by the values of 〈K1〉 and 〈(j′)2〉 or 〈(j′′)2〉. Along their
respective founding boundaries, we can safely assume that our lattices correlate with
the underlying classical actions, and that in the open finite neighbourhoods of normal
mode poles with K1 = ±n, at the top and bottom energies where both j′ and j′′ are
large, the lattices overlap and we can switch between them using (31). At the same
time, we have sufficiently high density of states for an ~-small elementary cell to be
transported near the founding boundaries. This invites immediately to examine the
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evolution of an elementary cell of our partial two-chart quantum lattice reconstruction
along the nontrivial closed path Γ = Γ′ ∪ Γ′′ that follows near the founding bound-
aries of the EM charts, and to investigate quantum monodromy19. It should be pointed
out that Γ loops around the neighbourhood of large |L1| values where neither of the
reconstructed lattices may safely extend, where singularities associated with the twin
complex unstable equilibria (sec. 3.3.2) may exist, and where the dynamics might be
strongly irregular. Notice also that the two σ- and C2-invariant spheres connect at the
K1 = ±n poles forming a closed singular surface (fig. 5) in S2×S2. So lifted to S2×S2,
the path Γ follows one sphere along Γ′′ and then comes back along the other on Γ′.

In fig. 10, we provide four plots to illustrate our monodromy calculation. The mid-
dle row plots show elementary cells traveling through the EML and EMR lattice charts
with all quantum states labeled additionally by 〈K1〉. The latter help identifying the
same quantum states in both charts. The bottom plots in fig. 10 show the same evolu-
tion but with quantum states labeled by respective quantum numbers [nL(u−), nL(u+)]
and [nR(u−), nR(u+)]. These plots help better visualizing the modification of quan-
tum numbers during the passage of the elementary cell from the EMR to the EML

representation in the lower energy region governed by (31b). They allow equally to see
the conservation of labels when the cell returns to the EMR representation in the upper
energy part of the lattice where (31a) prescribes that labels in both charts are identical.

As illustrated in fig. 10, with the initial-final point in the upper energy region, we
can start down Γ′′ in the EMR lattice, near its right boundary, and come back up
along Γ′ in the EMR lattice, near its left boundary. Compared to the single-chart
EM lattices with global momenta that were commonly used elsewhere (Sadovskiı́ and
Zhilinskiı́, 1999; Zhilinskiı́, 2005), we need additionally to switch between the “R” and
“L” charts. After coming down on Γ′′ into the neighbourhood of K1 = −n, we change
the “Right” local labels for the “Left” ones, and the quantum numbers of the vertices
of the elementary cell transform according to (31b). As a consequence, the evolution
of an elementary cell along Γ manifests monodromy which can be represented, in the
appropriately chosen basis of the local Z2 lattice, by matrix(

1 2
0 1

)
.

Here combining one of the basis elements with two others corresponds undoubtedly to
the fact, that the two complex-unstable equilibria with L1 = ±n and j′ = j′′ = 0 are
equivalent and Γ loops around the unique EM image of both of them.

19Sadovskiı́ and Zhilinskiı́ (2006) review monodromy in molecular physics; see also (Sadovskiı́ and
Zhilinskiı́, 1999) for an early analysis of a model quantum system on S2×S2 with monodromy which is in
many aspects analogous to the systems in this work. Quantum lattices with monodromy are analyzed in
(Zhilinskiı́, 2005). It is instructive to compare our lattices, specifically the lattices in figs. 2 and 8, 3, 10,
12, to those constructed for the perturbed hydrogen atom (Cushman and Sadovskiı́, 1999, 2000; Efstathiou
et al., 2007) where monodromy was first uncovered in a concrete quantum physical system (see the survey
by Efstathiou and Sadovskiı́ (2010)). In addition to the hydrogen atom perturbations, a number of other
important systems was analyzed after Richard Cushman used several simple examples (Cushman, 1983;
Cushman and Duistermaat, 1988; Bates, 1991) to introduce monodromy to physicists in the mid-1990’s.
Known systems with monodromy include rotation of quasilinear molecules, notably H2O near its unstable
linear equilibrium (Child et al., 1999) and others (Winnewisser et al., 2006), the H+

2 ion (Waalkens et al.,
2004), rotating dipolar symmetric top molecules and diatomic molecules subjected to an external electric
field (Kozin and Roberts, 2003; Arango et al., 2004), resonant “swing-spring” vibrations of CO2 (Cushman
et al., 2004), and large amplitude vibrations of LiCN (Joyeux et al., 2003).
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Figure 11: “Upper Right” energy-momentum graph for the Nb = 14, ` = 0 polyad of C2H2

with average values 〈K1〉 displayed near each quantum state. The corresponding “Upper Left”
graph is shown in fig. 3.

4.5.2 The Nb = 14 polyad representation

Following the outline in sec. 4.1 and 4.2, we reconstruct the EML and EMR graphs
for Nb = 14 using numerical values of energy and 〈K1〉. The results are displayed
in fig. 3 and 11. We like to find both “Left” and “Right” representations exhibiting
regular behaviour and to verify the relation (31) between them. The regularity at the
bottom energy of the EML graph may be improved by permuting several states at low
energies. This requires, however, the reciprocal permutation in the EMR graph which
worsens its low energy end. These troubles indicate the difficulties of extending the
graphs to all states of the polyad, especially at low energies, and of overlapping them.

4.5.3 The Nb = 16 polyad representation

The problems, that we encounter at low energies for Nb = 14 (sec. 4.5.2), persist and
aggravate in higher polyads. To see better how things may evolve, it is interesting
to consider the next polyad with Nb = 16. Tentative “Left” and “Right” graphs for
Nb = 16 are shown in fig. 12. In this figure, a thin solid line splits both patterns into top
and bottom parts. The line represents the set of states with the same “Left” and “Right”
labels [nL(u−), nL(u+)] = [nR(u−), nR(u+)], such that n(u−) + n(u+) = Nb/2
(maximum). Recall that according to (31) all states with the energies above this line
have the same “L” and “R” quantum numbers, and that in an “ideal” lattice, all states
situated on this line correspond to K1 = 0, see (30). Figure 12 shows that in the upper
energy region, the lattice appears very regular in both representations. Conversely, in
the lower energy region, the EML lattice still remains quite regular, whereas the EMR

graph becomes highly nonlinear.

5 Conclusion: types of localized bending states
Michel Herman has played a key part in the study of the rotational-vibrational levels
of acetylene and in particular, he has made many important contributions to the global
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Figure 12: “Upper Left” (top) and “Upper Right” (bottom) energy-momentum graphs for the
Nb = 16, ` = 0 polyad of C2H2 with average values 〈K1〉 displayed near each quantum state.

description and understanding of the vibrational energy levels of this molecule, see
(Amyay et al., 2016; Herman, 2011, 2007; Herman et al., 2003; Zhilinskiı́ et al., 2000;
Temsamani et al., 1996; Temsamani and Herman, 1995) and references therein. In the
present article, we rely on the numerical data by Herman et al. (2003) on the vibra-
tional energy levels of C2H2 resulting from the global fit of all known experimental
information, and reproducing accurately numerous observed spectral transitions. From
our many personal encounters, we know well how Michel Herman was always very
eager to see the dynamical interpretation and understanding of his data on C2H2 and
we intend to make a concrete contribution to advance this subject.

We begin with an effective quantum Hamiltonian Ĥn,ζ for bending polyads of C2H2
which is similar to that used previously by spectroscopists, notably by Jacobson et al.
(1998), and whose parameters are adjusted in order to reproduce the data by Herman
et al. (2003) on these vibrational states to available numerical accuracy. Specifically,
we reproduce all 545 Nb, `-bending vibrational levels from polyads for Nb ≤ 10 and
vibrational angular momentum ` = ζ ≤ Nb with standard error of 0.05 cm−1, which is
the rounding error of the data in (Herman et al., 2003). We focus on polyads with ` =
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ζ = 0 and we use Ĥn,ζ for the qualitative analysis of the system of energy levels within
these polyads. Such analysis comprises parallel studies of the quantum Hamiltonian, its
eigenfunctions, and the classical analogue dynamical system. It involves the detailed
analysis of the symmetry group action on classical variables and quantum states, see
the discussion by Michel and Zhilinskiı́ (2001b) and references therein. Parts of our
analysis reproduce all earlier results by Kellman and Chen (1991); Rose and Kellman
(1996); Jacobson et al. (1999b,a); Ding (2004); Tyng and Kellman (2006, 2009a,b,
2010).

First of all, we uncover the correct classical analogue of the C2H2 bending polyads
which has not been fully described by our predecessors. This classical analogue turns
out to be a very fundamental dynamical system and so it merits to be well understood
in our context. We show that it is a dynamical Euler–Poisson system on the classical
phase space S2×S2 equipped with a standard Poisson algebra so(3) × so(3) ∼ so(4)
and classical Hamiltonian function Hn,ζ : S2×S2 → R which can be expressed as
function of two commuting angular momenta X and Y . We demonstrate in full detail
(sec. 2 and appendices A,B) how this system is obtained from the axially symmetric
nearly (1:1):(1:1) resonant oscillator system of bending vibrational modes ν4 and ν5 of
C2H2 after reducing both its axial and approximate dynamical polyad S1 symmetries
with respective first integrals ζ and Nb = 2n − 1. For ζ = 0, this is equivalent to a
reduced perturbed Keplerian system, such as perturbed hydrogen atom in the n-shell
approximation treated within the Kustaanheimo–Stiefel (KS) formalism, see the review
by Efstathiou and Sadovskiı́ (2010) and references therein.

Taking into account the full spatio-temporal symmetry G8 of our system (sec. 2.4),
we describe a systematic construction of G8-invariant effective Hamiltonians Hn,ζ :
S2×S2 → R in terms of an appropriate polynomial integrity basis. To the lowest es-
sential order with some higher degree diagonal corrections, this gives the spectroscopic
Hamiltonians Hn,ζ of Jacobson et al. (1998) and others. Another highly important con-
sequence of the symmetry group presence is the stratification of the S2×S2 phase space
(sec. 2.4.1). We uncover a number of isolated points and two-dimensional subspaces
with nontrivial isotropy which play a key role in the subsequent analysis of classical
function Hn,ζ and of the eigenfunctions of its quantum analogue Ĥn,ζ .

The isolated points with nontrivial isotropy are necessarily the equilibria of the
reduced system on S2×S2 which correspond to the nonlinear bending normal modes.
The study of Ĥn,ζ=0 as function of parameter n (polyad number) uncovers series of
bifurcations of these equilibria as observed earlier in (Tyng and Kellman, 2006, 2010).
In particular, while some original modes lose stability, new pairs of stable local mode
equilibria appear for higher n and the corresponding doublets of quantum states local-
ized near these equilibria appear in the energy spectrum.

The principal, completely new—and somewhat unexpected, results of our study,
are related to the presence of the additional approximate dynamical symmetry that we
have found in low-to-medium excited bending polyads with Nb ≤ 12 and that we have
observed to persist to a large extent in higher polyads up to Nb = 20. This dynamical
symmetry appears to be closely related to the existence of two two-dimensional invari-
ant spheres S2 ⊂ S2×S2 with isotropy groups C2 and σ. Because the latter are spatial
(non-reversal) groups, the classical dynamics can be contained on these spheres and
can serve as the limit to quantum states “localized” (in the phase space sense, i.e., as
certain coherent states) in the neighbourhood of one of these 2-spheres. The spheres
are defined explicitly in S2×S2 as constant level sets of functions (j′)2 and (j′′)2, re-
spectively, which attain there their maximal value n2. Considering j′ and j′′ as two
approximate first integrals, we uncover, through the computation of averages 〈(j′)2〉
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and 〈(j′′)2〉 on the eigenfunctions of Ĥn,ζ=0, the localized states of this new, more
general, kind. Energies of quantum states for which new respective approximate quan-
tum numbers can be assigned form two well defined two-dimensional lattices in the
energy-momentum domain of the classical system.

The extent to which the approximate integrals j′ and j′′ and respective regular lat-
tices are justified is further uncovered by continuous propagation of respective local
regular energy level patterns and local “good” quantum numbers within the polyad.
It turns out that, even in high polyads, the two lattices cover most of the domain in
the energy-momentum space except a finite neighbourhood of the critical point with
maximal |L1| = n (and, consequently, minimal |K| = 0) which correspond to the
“precessional” nonlinear mode and is complex unstable at low n. Classical dynam-
ics on the preimage of this neighbourhood in S2×S2 is chaotic, but is surrounded by
nearly integrable dynamics. Using the correspondence between the two lattices, we
were able to demonstrate clearly the presence of monodromy20 both in the classical
and in the quantum system. While classical analysis reveals Hamiltonian Hopf bifur-
cations, the study of quantum energy state lattices in two different nearly integrable
approximations demonstrates the presence of monodromy directly through the evolu-
tion of an elementary lattice cell. This new result is, naturally, very important for the
concrete qualitative description of bending polyads, but it is also conceptually impor-
tant as we seem to deal with a situation, where approximate integrability is not global,
is destroyed within a compact submanifold of the phase space, but where monodromy
can be still introduced on the remaining Cantor set of the surrounding invariant tori.

Extension of regular energy level patterns indicates the regularity of bending polyads
of C2H2 even for such relatively high quantum numbers as Nb = 20 and suggests
further dynamical studies of this dynamical system using normal forms. In this con-
text, further analyzing the dynamics in a one-parameter family of polyads with control
parameter Nb which exhibits a series of elementary bifurcations can be of particular
interest. Classical studies in this case may be accompanied by quantum calculations
with artificially increased density of states (due to formally reduced Planck constant).
The qualitative modifications of the thus enhanced quantum energy lattices should def-
initely improve our understanding of the excited bending dynamics in acetylene and in
similar molecules.

A Reminder on the 1:1 oscillator
Perturbations of the 1:1 resonant harmonic oscillator are widely used by molecular
physicists, notably by Kellman, to model degenerate and quasi-degenerate vibrations.
After reduction of its oscillator symmetry, this system becomes a system with one de-
gree of freedom on the reduced phase space S2 equipped with the angular momentum
Poisson algebra so(3)∼su(2). It can be studied similarly to the reduced Euler top sys-
tem and its perturbations (nonrigid rotors). This relation between the two-dimensional
oscillator and the rotator has been widely discussed and exploited in many quantum
and classical applications. We describe here some tools and notations that will help
understanding the higher dimensional case of the 1:1:1:1 oscillator.

20See footnote 19.
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A.1 Coordinates
Consider a 4-dimensional symplectic space TR2

q,p∼R4∼C2 with coordinates

q := (qx, qy) and p := (px, py),

where q’s are the coordinates on the configuration space R2
q and p’s are the correspond-

ing conjugate momenta, and with the standard symplectic form ω = dq ∧ dp. We can
use the complex structure TR2

q,p → C2 and introduce complex dynamical variables

zs = qs + ips, z̄s = qs − ips, with s = x, y, (A.1)

Note that the map (q, p) 7→ (z, z̄) multiplies the symplectic form by a factor. In C2,
the original Poisson bracket

{qs, ps} = 1, (A.2a)

becomes
{zs, z̄s} = {qs + ips, qs − ips} = −2i. (A.2b)

A.2 Dynamical oscillator symmetry S1

Consider the Hamiltonian of the two-dimensional isotropic harmonic oscillator

n := 1
2 (q2

x + p2
x) + 1

2 (q2
y + p2

y) = 1
2zxz̄x + 1

2zy z̄y

The dynamical, or oscillator symmetry S1 of any system whose Hamiltonian H Poisson
commutes with n is defined by the Hamiltonian flow

ϕn : R1 × C2 → C2 : (t, z) 7→ exp(it) z (A.3a)

of the vector field Xn; the conjugate dynamical variable z̄ transforms, of course, as

(t, z̄) 7→ exp(−it) z̄. (A.3b)

So the action of ϕn on the complex dynamical variables (z, z̄) = (z1, z2, z̄1, z̄2) is
given by the 4×4 diagonal matrix

U1:1
t = diag(eit, eit, e−it, e−it ). (A.3c)

Generalizing to an isotropic k-oscillator with dynamical variables z1, . . . , zk and z̄1, . . . , z̄k,
we get the 2k × 2k diagonal matrix Ut

Ut = diag( eit, . . . , eit︸ ︷︷ ︸
k times

, e−it, . . . , e−it︸ ︷︷ ︸
k times

). (A.3d)

It can be seen that all monomials in (z, z̄) that are invariant with respect to ϕ are of
even total degree in (z, z̄) and have equal degrees in z and z̄.

A.3 Coordinates of the diagonal representation
Consider the angular momentum of the two-dimensional oscillator

` := qxpy − pxqy =
1
2i

(z̄xzy − zxz̄y).
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Contrary to n, it is not diagonal in the original dynamical variables (z, z̄). However,
it is possible and often convenient to use coordinates (z, z̄) in which both n and ` are
represented diagonally. To this end, we introduce new canonical variables (q1, q2) and
conjugate momenta (p1, p2), and the corresponding complex dynamical variables

zi = qi + ipi, z̄i = qi − ipi, with i = 1, 2, (A.4)

such that

x =
q1 + p2√

2
, px =

−q2 + p1√
2

, y = −q2 + p1√
2

, py =
q1 − p2√

2
. (A.5a)

and
zx =

z1 − iz2√
2

, zy =
iz1 − z2√

2
. (A.5b)

In other words, we define a linear symplectic isomorphism of C2

C2 → C2 : z 7→ z = Uz, where U = U−1 = U† =
1√
2

(
1 −i
i −1

)
In these new variables, ` becomes the Hamiltonian of the 2-dimensional harmonic os-
cillator in 1 : (−1) resonance,

`(q, p) = 1
2 (q2

1 + p2
1)− 1

2 (q2
2 + p2

2) = 1
2 z1z̄1 − 1

2 z2z̄2,

while the form of n remains unchanged,

n(q, p) = 1
2 (q2

1 + p2
1) + 1

2 (q2
2 + p2

2) = 1
2 z1z̄1 + 1

2 z2z̄2.

The expression (A.3a) for the flow defined by Xn remains the same albeit for replacing
z by z. At the same time, the Hamiltonian vector field X` defines on C2

z the diagonal
flow ϕ` of the 1:(−1) resonant oscillator. The action of ϕ` on the complex dynamical
variables (z, z̄) := (z1, z2, z̄1, z̄2)

ϕ` : R1 × C2 × C2 → C2 × C2 : (t, z, z̄) 7→ U
1:(−1)
t (z, z̄)T (A.6a)

is given by the 4×4 diagonal matrix

U
1:(−1)
t = diag(eit, e−it, e−it, eit ). (A.6b)

A.4 The Molien generating function for the invariants of the oscil-
lator S1 symmetry

Using the explicit definition (A.3) of the S1 action on the initial phase space Ck of the
k-oscillator, we compute the Molien generating function g(λ) directly from the Molien
theorem by integrating over the group S1 (Weyl, 1939)

g(λ) =
1
2π

∫ 2π

0

dt

det(1− λUt)
. (A.7)

Substituting (A.3d) and changing to the complex unimodular variable

θ = exp(it), such that dt =
dθ

iθ
, (A.8)
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we rewrite (A.7) as a standard Cauchy integral

g(λ) =
1

2πi

∮
|θ|=1

θk−1dθ

(1− λθ)k(θ − λ)k
. (A.9)

The formal real variable λ is used to Taylor expand g(λ) and the value of λ can be
assumed arbitrarily small. When |λ−1| > 1 our integral has a single pole θ = λ of
order k ≥ 1 within the unit circle |θ| = 1, and the Cauchy integral formula yields

g(λ) =
1

(k − 1)!
∂k−1

∂θk−1

θk−1

(1− λθ)k

∣∣∣∣∣
θ=λ

. (A.10)

In particular we obtain21

gC1/S1(λ) = 1/(1− λ2), (A.11a)

gC2/S1(λ) = (1 + λ2)/(1− λ2)3, (A.11b)

gCk/S1(λ) =
k−1∑
s=0

(
k−1

s

)2

λ2s
/

(1− λ2)2k−1. (A.11c)

Here the formal variable λ represents any of the variables z and z̄. Note that the gen-
erating function (A.11a) reflects the fact that any perturbation of a one-dimensional
harmonic oscillator can be normalized and represented as a Birkhoff series in the ac-
tion n = I = 1

2zz̄. Note also that the spaces Ck/S1 are complex projective spaces
CP k−1. These spaces are compact and C∞-smooth, and in particular, C2/S1 is the
space CP 1 which is isomorphic to the 2-sphere S2.

A.5 Reduction of the 1:1-oscillator
We have already noticed that any S1-invariant monomial is of even total degree in (z, z̄)
and of equal degree in z and z̄. In degree 2, there are four such monomials which can
be used to construct four invariants

j = 1
4 (z1z̄1 + z2z̄2) = 1

2n, (A.12a)
j1 = 1

4 (z1z̄1 − z2z̄2), (A.12b)
j2 = 1

4 (z1z̄2 + z̄1z2), (A.12c)

j3 = i
4 (z1z̄2 − z̄1z2), (A.12d)

subject to the only algebraic relation

2Φ1:1
n = j2

1 + j2
2 + j2

3 − j2 = 0. (A.13)

The Molien function (A.11b) suggests that the ring of all invariants of the S1 action of
the 1:1-oscillator system is generated multiplicatively by these four quadratic invari-
ants, and furthermore, that one of (j1, j2, j3) should be used as an auxiliary invariant.
Thus we can represent this ring as

R(j, j1, j2) • {1, j3}.
21An alternative derivation was given by Pavlov-Verevkin and Zhilinskiı́ (1988).
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It also follows that all S1 orbits (A.3a) with fixed value of n = 2j can be labeled
by the values of two of the invariants (j1, j2, j3) and the sign of the third one and that
the set of these orbits is a 2-sphere S2 which can be represented in the ambient space
R3

(j1,j2,j3)
using (A.13). This is the reduced phase space of the 1:1-oscillator22. Any

point on S2 lifts to a particular S1 orbit in C2.
The Poisson algebra generated by (j1, j2, j3) can be computed directly using def-

initions (A.12) and (A.2). It is an su(2) ∼ so(3) algebra with the structure matrix

j2 j3
j1 j3 −j2
j2 j1

(A.14a)

and Casimir j. Note that (A.14a) is conveniently represented by Dirac’s formula

{ja, jb} =
∑

c

εabc
∂Φ1:1

n

∂jc
, (A.14b)

where the antisymmetric Levi-Civita tensor εabc equals +1 and −1 for even and odd
permutations of (123), respectively.

In this way, any Hamiltonian H : C2 → R which Poisson commutes with n be-
comes a function H : S2 → R. We obtain a reduced system with one degree of
freedom. The reduced equations of motion are given by the Euler-Poisson equations

djs/dt = {js,H}, s = 1, 2, 3.

Note that if H and n do not commute, but H has the form of a series

H = H0 + εH1 + ε2H2 + . . . ,

where H0 = n and ε is a small parameter, H can be first normalized, i.e., transformed
into a normal form series H̃ which to any given order in ε does Poisson commute with
n and which can be reduced. This is a standard approach in molecular vibrations.

A.6 Quantum-classical correspondence
Using the quantum analogues of the classical dynamical variables, we can convert our
classical Hamiltonians into their quantum analogues and vice versus. Because we can-
not account for non-commutativity, only principal degree terms can be related. Near
the classical limit this should be sufficient.

Note that z̄/
√

2 and z/
√

2 or, equally, z̄/
√

2 and z/
√

2, correspond to the creation-
annihilation operators a+ and a whose action on the oscillator wavefunctions |ns〉 with
s = x, y or s = 1, 2 is

a+
s |ns〉 =

√
ns + 1 |ns + 1〉 and as|ns〉 =

√
ns |ns − 1〉.

These formulae apply directly if quantum wavefunctions are defined as |nx, ny〉 =
|nx〉|ny〉with n = nx+ny in terms of numbers of quanta in each mode of the oscillator.

22In the context of molecular vibrations (cf. Kellman (1985) and many others), all quantum states with
the same value of 2j = n are said to form n-polyads (Sadovskiı́ and Zhilinskiı́, 1995) and this space is often
called the polyad phase space or the polyad sphere. Polyads with even n are analogues of the rotational
multiplet of the quantized reduced Euler top.
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If, however, quantum wavefunctions are defined as eigenfunctions |n, l〉 of both n
and `, we can work with the z coordinates to represent our operators. In this represen-
tation, we have n = n1 + n2 and l = n1 − n2, where ni is the number of quanta in
mode i of the oscillator. In other words, the wavefunction |n1〉|n2〉 is automatically the
eigenfunction |n1 + n2, n1 − n2〉 of n and `. It follows that

a+
1 |n, l〉 =

√
n + l + 2

2
|n + 1, l + 1〉, a1|n, l〉 =

√
n + l

2
|n− 1, l − 1〉, (A.15a)

a+
2 |n, l〉 =

√
n− l + 2

2
|n + 1, l − 1〉, a2|n, l〉 =

√
n− l

2
|n− 1, l + 1〉. (A.15b)

B The 1:1:1:1 oscillator with axial symmetry
Consider now an 8-dimensional symplectic space TR4

q,p with coordinates q and re-
spective conjugate momenta p,

q := (q1, q2, q3, q4) and p := (p1, p2, p3, p4), (B.1)

and the standard symplectic form ω = dq ∧ dp. Our notation for (q, p) follows the one
used in the work on the hydrogen atom for the Kustaanheimo–Stiefel (KS) coordinates,
see, for example, (Sadovskiı́ and Zhilinskiı́, 1998; Cushman and Sadovskiı́, 2000).
Consider an oscillator symmetry S1 defined by the flow of the Hamiltonian vector field
X2n, where

2 n =
1
2

4∑
i=1

(q2
i + p2

i )

is the Hamiltonian of the harmonic 4-oscillator in 1:1:1:1 resonance. Consider an-
other S1 action defined by the flow of the Hamiltonian vector field Xζ , where ζ is the
momentum

ζ = q1p4 − q4p1 + q3p2 − q2p3. (B.2)

Note that the flow ϕζ rotates in 2-planes (1, 4) and (2, 3) of TR4
q,p, and that with regard

to the bending modes of C2H2 (sec. 2.5), the notation can be as follows

(qx′ , px′) := (q1, p1), (qy′ , py′) := (q4, p4),
(qx′′ , px′′) := (q3, p3), (qy′′ , py′′) := (q2, p2),

(B.3)

and that furthermore,
ζ = ` = `′ + `′′.

Similarly to the outline in sec. A.3, the simultaneous diagonal representation of both ζ
and n is obtained in new canonical coordinates on TR4

(Q,P )T = UT (q, p)T

defined by the symplectic orthogonal matrix

U =
1√
2

(
A −B
B A

)
with A =


0 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 0

 and B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 .
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The corresponding complex Hamiltonian coordinates are

z = Q− iP = W †UT (q, p)T with W =
(

1 −i
1 i

)
.

Expressed using the new complex dynamical variables (z, z̄), both Hamiltonian func-
tions n and ζ have diagonal representation

n = 1
4 (+z1z̄1 + z2z̄2 + z3z̄3 + z4z̄4) = 1

2 (n1 + n2 + n3 + n4) , (B.4a)

ζ = 1
2 (−z1z̄1 − z2z̄2 + z3z̄3 + z4z̄4) = −n1 − n2 + n3 + n4 . (B.4b)

B.1 Quadratic polynomial invariants of the T2
n,ζ action

It can be seen that—in addition to n and ζ themselves—there are six quadratic T2
2n,ζ

invariant polynomials in z, z̄. The latter can be constructed most straightforwardly, if
we redefine the generators of T2 = S1×S1 as

2x = n− ζ/2 = n1 + n2 and 2y = n + ζ/2 = n3 + n4 (B.5)

and then apply directly the definitions (A.12) for each factor space in TR4 ∼ R8 =
R4 × R4 in order to define the components of the Fock vectors J1 and J2 such that
‖J1‖ = x and ‖J2‖ = y. In our studies of the hydrogen atom perturbed by orthogonal
homogeneous constant electric and magnetic fields (Sadovskiı́ and Zhilinskiı́, 1998;
Cushman and Sadovskiı́, 1999, 2000) and in our subsequent work on more generic
field configurations (Efstathiou et al., 2007, 2008, 2009) the T2 invariants were chosen
as the following components of the Fock vectors23

J1 =
1
4

 2(n2 − n1)
i(z1z̄2 − z̄1z2)
−(z1z̄2 + z̄1z2)

 and J2 =
1
4

 2(n4 − n3)
i(z3z̄4 − z̄3z4)
−(z̄3z4 + z3z̄4)

 . (B.6)

Alternatively, we can define the components of linear combinations

L = J1 + J2 and K = J1 − J2 , (B.7a)

such that

L2 + K2 = 2(J2
1 + J2

2) = n2 + ζ2 and L ·K = −2n ζ, (B.7b)

and in particular

L1 = 1
2 (−n1 + n2 − n3 + n4) and K1 = 1

2 (−n1 + n2 + n3 − n4) . (B.7c)

In the original variables (B.1), these combinations are written as

L =
1
2

 2(q2p3 − q3p2)
q2p4 − q4p2 + q3p1 − q1p3

q1p2 − q2p1 + q3p4 − q4p3

 (B.8a)

and

K =
1
2

(q2
2 + p2

2 + q2
3 + p2

3)/2− (q2
1 + p2

1 + q2
4 + p2

4)/2
−q1q2 − p1p2 + q3q4 + p3p4

−p2p4 − p1p3 − q2q4 − q1q3

 , (B.8b)

23see footnote 6
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see, for example, equations (14) and (22) in (Sadovskiı́ and Zhilinskiı́, 1998). Ex-
pressions (B.8) and relations (B.3) are most useful for the correspondence to the C2H2
system; they are exploited in sec. 2.4.

The components (B.6) generate a Lie-Poisson algebra with the standard so(3) ×
so(3) ∼ so(4) structure: for any functions ξ and χ in (J1,J2) we have the Poisson
bracket

{ξ, χ}J1,J2 = J1 · [∇J1ξ ×∇J1χ] + J2 · [∇J2ξ ×∇J2χ] (B.9)

In a Keplerian system, ζ equals zero, L is the angular momentum, and K is the ec-
centricity vector24. For the hydrogen atom, the Keplerian integral n and the length
L := ‖L‖ correspond to the principal quantum number n and orbital momentum l.
More precisely, in the semiclassical limit (using atomic units)

nKepler = n + 1 and L =
√

l(l + 1) ≈ l + 1
2 .

On the other hand, for the 1:1:1:1 bending polyads of C2H2, 2n is the total number of
bending quanta, ζ is the total vibrational angular momentum, and

ν = −K1 and µ = L1, (B.10)

give, respectively, the detuning and the difference of the angular momenta of the two
1:1 normal mode subsystems, see sec. 2.

B.2 Symmetrized generating function and integrity basis
We outline the construction of the generating function and the integrity basis for the
G8-invariant polynomials in the dynamical variables {K1,K2,K3, L1, L2, L3} obey-
ing relations (B.7b). The effective G8-invariant polyad Hamiltonian of Jacobson et al.
(1998, 1999b) is developed to degree 3 in {K,L} and reproduces all available spectro-
scopic data (Herman et al., 2003) sufficiently well. We will see below that difficulties in
writing this Hamiltonian unambiguously begin in degree 4. For the sake of simplicity,
we do not consider explicit dependence on integrals (n, ζ).

We rely on the techniques of the theory of invariants. The specialized mathemati-
cal literature on these techniques is very abundant, and physical applications are quite
diverse and are not simply related to our context. An interested reader can find more
details and further references in the reviews (Michel and Zhilinskiı́, 2001b; Zhilin-
skiı́, 2001). Further mathematical aspects are presented in (Weyl, 1939; Stanley, 1979;
Sturmfels, 1993), while more physically oriented problems are studied, for example, in
(Patera et al., 1978; Kim et al., 2001).

For constant n and ζ, relations (B.7b) define a 4-dimensional manifold with topol-
ogy S2×S2 naturally embedded in R6

L,K . The group G8 acting on this manifold (see
sec. 2.4) is a finite order-8 commutative group isomorphic to Z2 × Z2 × Z2 whose
characters are given in table 1.

In the absence of any symmetry group action on S2×S2 (trivial symmetry group),
we consider the generating function for all independent polynomials in R6

L,K , use
relations (B.7b) as basic (denominator) invariants, and simply remove them from the
generating function. Symbolically this can be written as

1
(1− λ)6

→ 1 + 2λ + λ2

(1− λ)4(1− λ2)2
→ 1 + 2λ + λ2

(1− λ)4

24Often called after Laplace-Runge-Lenz, see footnote 4
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Table 9: Character table for the reversal order-four symmetry subgroup G∗
4 ⊂ G8 leaving both

K1 and L1 invariant.

E T Cy
2 i T σxz

v {Lα,Kα}
Ag 1 1 1 1 K1, L1

Bg 1 −1 1 −1
Au 1 1 −1 −1 K2, L2

Bu 1 −1 −1 1 K3, L3

The choice of the concrete integrity basis is, naturally, ambiguous. It is important to
choose as six denominator invariants along with two polynomials (B.7b) four other
polynomials which form together algebraically independent set of polynomials. This
can be done, for example, as

K2 + L2, K ·L, K1, L1, K2, L2.

After such a choice of algebraically independent polynomials is done, numerator poly-
nomials can be added as

L3, K3, K2
3 − L2

3.

Note that we cannot use the product L3K3 of the two linear auxiliary (numerator)
polynomials as the quadratic auxiliary polynomial because

L3K3 = K ·L− L1K1 − L2K2

is a polynomial in the principal (denominator) invariants. At the same time, if we use
linear auxiliary invariants K3±L3, then the quadratic numerator invariant can be taken
as their product. As long as we have no additional symmetries, denominator invariants
{K1,K2, L1, L2} remain one of several possible choices. Any of these choices allows
to generate a complete list of algebraically independent polynomials obeying the two
quadratic relations which we want to eliminate.

The same procedure can be applied to eliminate quadratic relations in the pres-
ence of symmetry. We begin by taking into account the order-4 reversal group G∗4 :=
{1, T2, i, Tv}, which is an index-2 subgroup of the total finite invariance group G8.
This subgroup is isomorphic to the point group C2h and the abstract group Z2 × Z2,
and its action on (K,L) can be deduced from table 1. This action is equivalent to
the standard action of C2h on R6

L,K , and its advantage is that each pair {Ki, Li} with
i = 1, 2, 3, transforms according to one irreducible representation, see table 9.

We construct the generating function for the G∗4-invariants from the initial repre-
sentation Ag ×Ag ×Au ×Au ×Bu ×Bu. From the generating function

g
Ag←{2Ag×2Au×2Bu}
Z2×Z2

(tAg , tAu , tBu) =
1 + t2Au

+ t2Bu
+ t2Au

t2Bu

(1− tAg
)2(1− t2Au

)2(1− t2Bu
)2

(B.11)

written in terms of three auxiliary parameters, we can immediately suggest one pos-
sible integrity basis after noticing that its three quadratic terms t2Au

correspond to
{K2

2 , L2
2,K2L2}, while the three terms quadratic t2Bu

represent {K2
3 , L2

3,K3L3}. The
quartic term t2Au

t2Bu
corresponds to the product K2L2K3L3. Such choice suffices if

there are no constraints (B.7b). In order to eliminate (B.7b), we should pass to lin-
ear combinations and choose those terms as denominator invariants which should be
dropped.
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The choice of the integrity basis can be done as follows. For the denominator invari-
ants we prefer to choose among six polynomials two terms corresponding to relations
to be removed.

L1, K1, K2
2 − L2

2, K2
3 − L2

3 (B.12a)
L2

1 + L2
2 + L2

3 + K2
1 + K2

2 + K2
3 , L1K1 + L2K2 + L3K3. (B.12b)

The choice is naturally ambiguous. For linear denominator invariants any linear com-
binations of L1 and K1 could be chosen, but we prefer to take denominator invariants
in such way that they transform according to irreps of the full symmetry group. This
gives unique choice for linear invariants. From these linear invariants it is possible to
construct three linearly independent quadratic invariants L2

1,K
2
1 , L1K1. Among other

six quadratic invariants L2
2,K

2
2 , L2K2, L

2
3,K

2
3 , L3K3. there are four algebraically in-

dependent and two linearly independent. When making choice of algebraically in-
dependent quadratic invariants we take two of them as relations defining the S2×S2

manifold. It is possible because we can form linear combinations with quadratic poly-
nomials constructed from linear algebraically independent invariants. This explains the
choice of quadratic denominators made in (B.12).

Note that the integrity basis (B.12) does not correspond exactly to generating func-
tion (B.11) with three formal parameters. The integrity basis implied by (B.11) should
be chosen so that each invariant polynomial is constructed from variables belong-
ing to the same irreducible representation of G∗4. The basis (B.12) includes poly-
nomials, specifically the ones corresponding to the S2×S2 defining relations (B.7b),
which are linear combinations of monomials constructed from variables belonging to
different irreducible representations. To see the correspondence between the chosen
integrity basis and generating function (B.11) we should replace the three variables
{tAg , tAu , tBu} of (B.11) by one formal variable λ. The resulting generating function
has the form

1 + 2λ + λ2

(1− λ)2(1− λ2)4
.

Choosing the numerator invariants, we can easily define quadratic polynomials, but we
should pay more attention to the quartic polynomial. Thus it may be tentative to use
quartic polynomial K2L2K3L3, or just a product of two quadratic invariant numerator
polynomials. The situation here is somewhat similar to the one at the beginning of this
appendix where we constructed numerator invariants after removing defining relations
of S2×S2 and had no additional symmetries. In that simple case we had to choose
between L3K3, the product of two auxiliary linear invariants L3,K3, and K2

3 − L2
3. It

was sufficiently evident that L3K3 could not be used as quadratic auxiliary invariant
for the paticular, chosen beforehand (imposed), denominator invariant. Now we face a
similar problem at degree 4 and we should analyze it carefully.

The difference between the two suggested choices becomes apparent after classify-
ing invariants by their transformation properties with respect to the complete group G8.
The G∗4-invariant numerator polynomial K2L2K3L3 belongs to the Ag representation
of G8, whereas the product of two auxiliary quadratic G∗4 invariants belongs to the B3g

representation of G8. These propositions are contradictory.
In order to find out which of the above suggestions is correct, we can construct

all linearly independent quartic G∗4-invariant polynomials from linear and quadratic
denominator and numerator invariants. As we detail below, this gives 41 polynomials.
On the other hand, the generating function (B.11) tells us that there is a total of 42
linearly independent quartic G∗4-invariant polynomials. It follows that we should find
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one additional quartic G∗4-invariant polynomial in order to complete the set of the 41
already constructed.

The multiplicative ring R generated freely by principal (denominator) invariants
(B.12a) contains 27 quartic and 7 quadratic polynomials. Multiplying the latter by two
quadratic auxiliary (numerator) invariants gives further 14 quartic polynomials to make
the total of 27 + 14 = 41. By checking linear dependencies among generated quartic
polynomials, we have found that it is necessary to choose K2L2 −K3L3 as principal
(denominator) invariant, while the polynomial K2

3 − L2
3 should be used as auxiliary

(numerator) invariant. In such a case, the generating function

1 + φ1 + φ2 + φ1φ2

(1−K1)(1− L1)(1− θ1)(1− θ2)(1− θ3)(1− θ4)
, (B.13)

with

φ1 = K2
2 + L2

2 −K2
3 − L2

3, φ2 = K2
3 − L2

3, (B.14a)

θ1 = K2
2 − L2

2, θ2 = K2L2 −K3L3, (B.14b)

θ3 = K2 + L2 and θ4 = K ·L, (B.14c)

describes correctly all linearly independent G∗4-invariant polynomials in {K,L} at
least to degree four.

We can now turn to the complete group G8. Our numerator and denominator invari-
ants for group G∗4 are constructed so that they belong to the irreducible representations
of G8, specifically we have

(φ1)Ag , (φ2)Ag , (φ1φ2)Ag , (B.15)
(K1)Ag , (L1)B3g , (θ1)Ag , (θ2)B3g , (θ3)Ag , (θ4)B3g . (B.16)

To construct the generating function for the G8 invariants, we should multiply the
numerator and denominator of (B.13) by

(1 + L1)(1 + θ2)(1 + θ4).

This makes all denominator terms G8-invariant and increases the number of terms in
the numerator, which includes now terms of both Ag and B3g symmetry. Symbolically,
this transformation of (B.13) can be represented using two formal parameters (λ, µ) for
polynomials of symmetry types Ag and B3g , respectively, as follows

1 + 2λ2 + λ4

(1− λ)(1− µ)(1− λ2)2(1− µ2)2
=

(1 + 2λ2 + λ4)(1 + µ)(1 + µ2)2

(1− λ)(1− µ2)(1− λ2)2(1− µ4)2
. (B.17)

Here, in the numerator, µ stands for linear covariant L1 of type B3g , while the two
µ2 terms correspond to two quadratic covariants θ2 and θ4 of symmetry B3g . In the
denominator, µ2 corresponds to the invariant L2

1, while the two µ4 factors correspond to
two invariants, θ2

2 and θ2
4 . In order to obtain the generating function for G8 invariants,

we should retain only terms of symmetry Ag in the numerator. The symbolic form of
this functions is

(1 + 2λ2 + λ4)(1 + 2λ3 + λ4)
(1− λ)(1− λ2)3(1− λ4)2

,

or, more explicitly,

Numerator: (1 + φ1 + φ2 + φ1φ2)(1 + L1θ2 + L1θ4 + θ2θ4), (B.18a)

Denominator: (1−K1)(1− L2
1)(1− θ1)((1− θ2

2)(1− θ3)(1− θ2
4). (B.18b)
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Fixing (excluding) relations θ3 and θ4, we obtain

(1 + 2λ2 + λ4)(1 + λ3)
(1− λ)(1− λ2)2(1− λ4)

=
1 + 2λ2 + λ3 + λ4 + 2λ5 + λ7

(1− λ)(1− λ2)2(1− λ4)
(B.19)

with denominator invariants

K1, L2
1, θ1, θ2

2, (B.20a)

and numerator invariants

φ1, φ2, L1θ2, φ1φ2, φ1L1θ2, φ2L1θ2, φ1φ2L1θ2, (B.20b)

where φi and θi are defined in (B.14).

References
R. Abraham and J. Marsden. Foundation of Mechanics. Addison-Wesley, Reading, MA, 1978.

B. Amyay, A. Fayt, M. Herman, and J. V. Auwera. Vibration-rotation spectroscopic database on
acetylene, X̃ 1Σ+

g (12C2H2). J. Phys. Chem. Ref. Data, 45(2):023103, 2016.

C. A. Arango, W. W. Kennerly, and G. S. Ezra. Quantum monodromy for diatomic molecules
in combined electrostatic and pulsed nonresonant laser fields. Chem. Phys. Lett., 392(4):
486–492, 2004. ISSN 0009-2614.

V. I. Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations, volume
250 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1983.

V. I. Arnol’d. Mathematical methods of classical mechanics, volume 60 of Graduated Texts in
Mathematics. Springer-Verlag, New York, 2 edition, 1989. Translated by K. Vogtmann and
A. Weinstein.

V. I. Arnol’d. Catastrophe theory. Springer-Verlag, Berlin, 1992.

V. Bargmann. Zur Theorie des Wasserstoffatoms (on the theory of the hydrogen atom). Z. Phys.,
99:576–582, 1936.

L. M. Bates. Monodromy in the champagne bottle. Z. Angew. Math. Phys., 42:837–847, 1991.
ISSN 1420-9039.

B. A. Bernevig. Topological insulators and topological superconductors. Princeton Univ. Press,
Princeton, 2013.

P.-L. Buono, F. Laurent-Polz, and J. Montaldi. Symmetric Hamiltonian bifurcations, based on
lectures by J. Montaldi. In J. Montaldi and T. Ratiu, editors, Geometric Mechanics and Sym-
metry : The Peyresq Lectures, volume 306 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, UK, 2005.

M. S. Child and L. Halonen. Advances in Chemical Physics, volume 57, chapter Overtone
Frequencies and Intensities in the Local Mode Picture, pages 1–58. John Wiley & Sons, Inc.,
New York, 1984. doi: 10.1002/9780470142813.ch1.

M. S. Child, T. Weston, and J. Tennyson. Quantum monodromy in the spectrum of H2O and
other systems: new insight into the level structure of quasi-linear molecules. Mol. Phys., 96:
371–379, 1999.

56

http://dx.doi.org/10.1063/1.4947297
http://dx.doi.org/10.1016/j.cplett.2004.06.002
http://dx.doi.org/10.1016/j.cplett.2004.06.002
http://dx.doi.org/10.1007/BF01338811
http://dx.doi.org/10.1007/BF00944566
http://dx.doi.org/10.1002/9780470142813.ch1
http://dx.doi.org/10.1080/00268979909482971
http://dx.doi.org/10.1080/00268979909482971


H. Crogman, V. Boudon, and D. A. Sadovskiı́. Local modes of silane within the framework of
stretching vibrational polyads. Europ. Phys. J. D, 42:61–72, 2007.

R. H. Cushman and L. Bates. Global aspects of classical integrable systems. Birkhäuser, Basel,
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D. Fontanari, F. Fassò, and D. A. Sadovskiı́. Quantum manifestations of Nekhoroshev stability.
Phys. Lett. A, 380:3167–3172, Aug 2016.

R. Gilmore. Catastrophe Theory for Scientists and Engineers. Dover books on advanced math-
ematics. Dover Publications, New York, 1993. ISBN 9780486675398.

H. Goldstein. Prehistory of the Runge-Lenz vector. Am. Jour. Phys., 43:735–738, 1975.

H. Goldstein. More on the prehistory of the Runge-Lenz vector. Am. Jour. Phys., 44:1123–1124,
1976.

W. G. Harter and C. W. Patterson. Rotational energy surfaces and high-J eigenvalue structure of
polyatomic molecules. J. Chem. Phys., 80(9):4241–61, 1984.

B. Hartke, A. E. Janza, W. Karrlein, J. Manz, V. Mohan, and H.-J. Schreier. Local versus hy-
perspherical modes of water and formaldehyde: Effect of molecular complexity on mode-
selective structures and dynamics. J. Chem. Phys., 96(5):3569, 1992.

M. Herman. The acetylene ground state saga. Mol. Phys., 105(17-18):2217–2241, 2007.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera. Vibrational spectroscopic database
on acetylene, X̃ 1Σ+

g (12 C2H2, 12 C2D2, and 13 C2H2). J. Phys. Chem. Ref. Data, 32(3):921–
1361, 2003.

M. Herman. High-resolution Infrared Spectroscopy of Acetylene: Theoretical Background and
Research Trends. John Wiley & Sons, Ltd, London, 2011. ISBN 9780470749593. doi:
10.1002/9780470749593.hrs101.

D. R. Herrick. Symmetry of the quadratic zeeman effect for hydrogen. Phys. Rev. A, 26:323–329,
1982.

M. P. Jacobson, C. Jung, H. S. Taylor, and R. W. Field. State-by-state assignment of the bending
spectrum of acetylene at 15.000 cm−1: A case study of quantum-classical correspondence. J.
Chem. Phys., 111:600–618, 1999a.

M. P. Jacobson, R. J. Silbey, and R. W. Field. Local mode behavior in the acetylene bending
system. J. Chem. Phys., 110:845–859, 1999b.

M. P. Jacobson, J. P. O’Brien, R. J. Silbey, and R. W. Field. Pure bending dynamics in the
acetylene X̃ Σ+

g state up to 15 000 cm−1 of internal energy. J. Chem. Phys., 109(1):121–133,
July 1998.
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