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Classification of perturbations of the hydrogen
atom by small static electric and magnetic fields
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We consider perturbations of the hydrogen atom by sufficiently small homogeneous static
electric and magnetic fields of all possible mutual orientations. Normalising with regard to
the Keplerian symmetry, we uncover resonances and conjecture that the parameter space
of this family of dynamical systems is stratified into zones centred on the resonances. The
1:1 resonance corresponds to the orthogonal field limit, studied earlier by Cushman &
Sadovskiı́ (2000). We describe the structure of the 1:1 zone, where the system may have
monodromy of different kinds, and consider briefly the 1:2 zone.
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1

1. Introduction2

Perturbations of the hydrogen atom by external electric and magnetic fields constitute one3

of the most fundamental families of atomic physics systems. In the limit of the infinite4

proton mass and with spin and relativistic corrections neglected, this family becomes a5

quantum realisation of a specific class of perturbations of the Kepler system with Hamilto-6

nian (in atomic units)7

H =
1

2
P2 − 1

|Q| + FeQ2 + FbQ1 +
G

2
(Q2P3 −Q3P2) +

G2

8
(Q2

2 +Q2
3) = E, (1.1)8

where (Q,P) are standard canonical coordinates on the phase space R
6 and 3-vectors9

F = (Fb, Fe, 0) and G = (G, 0, 0) represent the electric and the magnetic field, respec-10

tively. We remain at sufficiently large negative physical energy E and consider bounded11

motion near the origin. For sufficiently small fields, we can use the well-known dynamical12

Keplerian symmetry SO(4) of the unperturbed system and consider the angular momen-13

tum L and the eccentricity vector K as approximate integrals of motion. The Hamiltonian14

(1.1) can be first regularised and then normalised with respect to the action of this sym-15

metry, which is defined by the flow of the regularised unperturbed system. Using such16

transformation, we can replace the original non-integrable system with three degrees of17

freedom described by (1.1) by an integrable approximation. More specifically, we obtain18

a three-parameter family of integrable dynamical models with parameters (Fb, Fe, G). By19

analysing and characterising the qualitatively different member systems in this family, we20

can classify the real non-integrable dynamical systems with Hamiltonian (1.1).21
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Figure 1. Example of overlapping lower cells in the 2D-image of an energy-momentum map EM
(bottom left) and its two-sheet cell unfolding surface (top left). Points a, b′, b′′, and c lift each to
a connected component (right); b′ and b′′ correspond to the same EM value b. Double line marks
branching boundary; bold solid line marks a path connecting a, c and b.

The result of the reduction is a two degree of freedom Hamiltonian system described1

by the Hamiltonian2

Hn = 2n+ n (H1 + · · · ) (1.2)3

where n is the value of the Keplerian integral of motion N ; in the quantum system, n4

corresponds to the principal quantum number, and Hn describes the internal structure of5

n-shells. Furthermore, the flow of H1 is linear and is characterized by two frequencies ω+6

and ω− that depend on the external parameters (Fb, Fe, G) of the system.7

It follows that we can obtain an integrable approximation by normalising a second8

time. This specifics of systems with Hamiltonian (1.1) was exploited by Pauli (1926), cf.9

(van der Waerden, 1968; Valent, 2003). Note that instead of normalising with respect to10

the flow of the vector field of the Hamiltonian function H1, we can choose an S
1 flow11

given by the vector field of a momentum µ which Poisson commutes with H1, and which12

is chosen typically so that ωµ ≈ H1 with ω = ω(G,Fe, Fb) > 0 a constant. The rational13

frequencies ωk± of µ where k± ∈ Z>0 approximate the frequencies ω± of H1; the small14

difference H1 − ωµ is called linear detuning term. See §3 and §4 for concrete choices of15

ω and µ respectively. Thus any perturbation of the hydrogen atom by sufficiently small16

static external fields possesses a resonant integrable approximation with first integrals N17

(Keplerian action), µ (momentum), and H (second reduced energy) with respective values18

n ≥ 0, m, and h. We can now attempt to characterise the entire family of perturbations of19

the hydrogen atom by sufficiently small static external fields on the basis of the qualitative20

description of the family of such approximations for each resonance k+ : k−.21

2. Qualitative classification based on integrable approximation22

Classification of the resonant integrable approximations of systems with Hamiltonian (1.1)23

follows from the qualitative analysis of the integrable fibrations defined on R
6 by (N,µ,H).24

The main tool in this analysis is the energy-momentum map (or the integrable map)25

EM : R
6 → R

3 : (q, p) 7→
(

N(q, p), µ(q, p),H(L(q, p),K(q, p))
)

= (n,m, h), (2.1)26

where both N and µ are momenta (since each of them defines an S
1 action), and H plays27

the role of energy. For each system, we begin by studying the geometry of individual in-28

verse images EM−1(n,m, h) and fibres1 Λn,m,h. In particular, we find critical points (q, p)29

1 we call fibre a connected component Λn,m,h of the inverse image (or preimage) EM−1(n, m, h)

Proc. Roy. Soc. A (2007) 463, 1771–1790 preprint zones 2007-5-25 ms 07PA0028



Perturbations of the hydrogen atom 3

a c a b′c

b′′

a b′c

b′′

Figure 2. A simple BD of a system with monodromy (left), and cell unfolding surfaces with two over-
lapping lower cells of a system with nonlocal monodromy (centre), and with a single self-overlapping
cell of a system with bidromy (right). Point c in the leftmost image is an isolated critical value which
lifts to a pinched torus; other points and paths are similar to those in figure 1.

at which the rank of ∂(N,µ,H)/∂(q, p) is non-maximal and critical fibres which contain1

such points. Regular fibres of our systems are 3-tori T
3; critical fibres can be smooth lower2

dimensional tori T
2 or S

1, a single point, or singular fibres of dimension 3, such as singly3

or doubly pinched torus, curled torus, bitorus, etc. These singular fibres can be represented4

as direct products of the S
1 cycle defined by the Keplerian symmetry action and certain5

two-dimensional singular fibers, which are depicted, for example, in (Cushman & Bates,6

1997, chapter IV.3, figure 3.5), (Nekhoroshev et al., 2006, Appendix A), and (Cushman7

& Sadovskiı́, 1999; Efstathiou et al., 2007; Efstathiou, 2004). In particular, a pinched 2-8

torus is obtained from a regular 2-torus by contracting one of its basic cycles to a point,9

which becomes a focus-focus equilibrium; a doubly pinched torus is a similar fibre with10

two pinch points. A bitorus is formed by two 2-tori glued together along a common basic11

cycle2 which is a hyperbolic relative equilibrium, see fibre c in figure 1.12

In the cases we discuss below, the range of (2.1) is a simply connected domain R̄EM13

in R
3. It is the closure of the set REM of all regular EM values, which can consist of14

several disjoint open subdomains. If within R̄EM we distinguish strata of EM values with15

qualitatively different inverse images, and in particular if we distinguish critical and regular16

EM values, such R̄EM becomes a bifurcation diagram BD (Bolsinov & Fomenko, 2004),17

which we can use to describe deformations (and in particular—bifurcations) of regular18

fibres under the variation of dynamical parameters (n,m, h). For example, in figure 1 we19

follow the deformation of a regular fibre Λa into two fibres Λb′ and Λb′′ along the path20

(acb); the singular fibre Λc is a bitorus.21

Description of the BD geometry involves the concepts of lower cell, unfolded lower22

cell, and cell unfolding surface, which are important in situations where preimages23

EM−1(n,m, h) consist of several fibres (Sadovskiı́ & Zhilinskiı́, 2007). Lower and upper24

cells, and the cell structure of the phase space are introduced by Nekhoroshev et al. (2006).25

Upper cells are the closures of connected sets in the phase space (in our case R
6) of regular26

fibers of the integrable map. They overlap only on their boundaries called walls. Lower27

cells are images of upper cells under the EM map. They can overlap and self-overlap in28

R̄EM, while in the unfolding surface S̄EM, unfolded lower cells self-overlap and overlap29

each other only on their boundaries which consist of critical EM values. The open set of30

regular EM values in the interior of an unfolded lower cell is connected but not necessar-31

ily simply connected. The surface S̄EM can be constructed as a branch covering of R̄EM,32

whose smooth sheets may be glued together along certain cell boundaries called branching33

walls. Several examples are shown in figures 1 and 2.34

The study of individual unfolded bifurcation diagrams BD is naturally expanded to the35

description of parametric families of such BD’s. In this context, we prefer calling the latter36

2 When the momentum µ defines a global S1 action which can be used to define a ‘fixed’ cycle γ0 on all
fibers, bitori can be further classified with regard to γ0. We do not use such detailed classification in this paper.
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stratified EM ranges or unfolding surfaces S̄EM in order to avoid confusing expressions,1

such as ‘bifurcation of unfolded bifurcation diagram’. We describe a family of stratified2

EM ranges BD by specifying deformations and qualitative changes of BD under the vari-3

ation of the external physical parameters G, Fb, and Fe.4

Definition 1. Any two stratified EM ranges BD = S̄EM are called equivalent (or isomor-5

phic) if they can be related (in an ambient space of the unfolding) by a smooth deformation.6

Using this equivalence and the definition below, we can characterise the whole family of7

perturbed systems with Hamiltonian (1.1)8

Definition 2. Perturbed Kepler systems with Hamiltonian (1.1) which can be approximated9

by integrable systems with integrable maps (2.1) and stratified EM ranges BD = S̄EM are10

considered to be qualitatively equivalent if their BD are isomorphic.11

Remark 1. Our definition 2 is quite restrictive. It applies only to systems which have12

a valid global integrable approximation with first integrals (N,µ,H) in (2.1) and whose13

global normal form H approximates all fibres. Such definition is appropriate for our spe-14

cific perturbed systems which in addition to N have the second ‘built in’ approximate first15

integral H1 (or µ) with a linear flow (see §1). In a more general situation, we can typically16

construct local normal forms which describe subsets of regular tori near stable equilibria17

or short periodic orbits. Such description may not cover the whole phase space, but may18

still result in a weaker ‘local’ equivalence.19

We should precise which integrable approximations are acceptable in definition 2. In20

order for the classification based on definition 2 to be meaningful and useful, we should21

assume (or better—prove) that from the BD type of any system, we can both characterise22

its singular fibres and tell how its regular fibres (tori) fit together. More specifically, for a23

given unfolded lower cell and a given regular value (n,m, h) in it, we should be able to24

tell whether local action-angle variables defined in a neighbourhood of fibre T
3
n,m,h can be25

extended (as smooth and single valued real functions on R
6) to the entire preimage of the26

regular interior R of the cell, i.e., whether they can be made global and whether the torus27

bundle over R is trivial. If that is impossible, we should be able to cover EM−1(R) by an28

atlas of several local action-angle charts and to characterise the nontriviality of the bundle.29

These properties of regular toric bundles over the regular interiors R of unfolded lower30

cells (and over REM in general) are of primary importance to the original nonintegrable31

system and therefore—to our study. While certain singular fibres that we encounter in32

the integrable approximation may not be present in the original system, we conjecture33

that these properties persist as long as our normalisation makes sense, i.e., as long as the34

original system retains a sufficiently large set of KAM tori which is interpolated correctly35

by the families of tori of the normalised system.36

Monodromy is the simplest obstruction to global action-angle variables (Duistermaat,37

1980; Cushman & Bates, 1997) which occurs in many fundamental physical systems. In38

many cases, we can determine directly from BD whether such an obstruction is present.339

Furthermore, Rink (2004); Broer et al. (2007) prove that monodromy persists in the orig-40

inal nonintegrable system. Contemporary literature on monodromy and its appearances in41

physical systems is quite comprehensive. So we provide only a very brief account here.42

3 in two degrees of freedom, by the geometric monodromy theorem of Cushman & Duistermaat (2001); Vū
Ngo. c (2000); Zung (1997), a system has monodromy if it has an isolated critical EM value c surrounded by
regular EM values (figure 2, left), and the preimage EM−1(c) of c is a pinched torus.
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Figure 3. BD of a system with fractional monodromy (left, cf figure 2 left) with a line of weakly
critical EM values c (dashes) that lift to curled tori Λc. Fractional monodromy corresponds to the
closed directed path (solid bold line) which goes around the strongly critical value (open circle) and
crosses the critical line at c. Further plots illustrate the deformation of the regular fibres Λa′ and Λa′′

and of the cycles on them as we go from a′ to a′′ (from Nekhoroshev et al. (2006)).

Monodromy is a mapping from the fundamental group π1 of REM to the group of auto-1

morphisms of the first homology group H1(T
k) of regular fibres which is isomorphic to2

the regular lattice Z
k (in our case k = 3). It can be computed by choosing a closed directed3

path Γ ⊂ REM (as, for example, in figure 2, left) and studying the connection on the torus4

bundle over Γ induced by the local action-angle variables. The result depends only on the5

homotopy class of Γ and is expressed using a matrix in SL(k,Z) which depends, naturally,6

on the basis choice in H1(T
k
a) for some a ∈ Γ.7

To follow the rest of this note, it is useful to recall that as a topological property, mon-8

odromy persists under continuous deformations of the system. This aspect and the related9

sign and addition theorems are exploited in the analysis in §4b. In §4c we give the first10

physical examples of generalised or fractional monodromy (Nekhoroshev et al., 2002,11

2006; Efstathiou et al., 2007) as well as bidromy (Sadovskiı́ & Zhilinskiı́, 2007) which12

remained abstract concepts until now. Fractional monodromy generalises monodromy to a13

wider class of paths Γ which intersect lines of particular ‘weakly’ critical values c. Over14

each c, the singular fibre Λc (factored in our case by the Keplerian S
1 action) has the topol-15

ogy of a twisted cylinder over figure eight and is called curled torus. The transformation16

of the regular tori in the neighbourhood of Λc that occurs as we follow Γ is shown in fig-17

ure 3. Bidromy goes beyond the analysis of π1(REM) by associating automorphisms of18

H1(T
k) with certain bipaths in the stratified EM range, such as the one in figure 2, right.19

Finally, since we deal with a quantum system, we imply constantly the correspondence20

(Cushman & Duistermaat, 1988; Vū Ngo. c, 1999; Sadovskiı́ & Zhilinskiı́, 1999) of clas-21

sical Hamiltonian monodromy to defects (Zhilinskiı́, 2005; Nekhoroshev et al., 2006) of22

the lattice formed by the joint spectrum of quantum operators (N̂ , µ̂, Ĥ), a phenomenon23

also known as quantum monodromy. In fact, a computation of such spectrum by Schleif &24

Delos (2007) was the principal source of motivation for this work.25

3. Resonance zones in the parameter space26

The parameter space CFG of (1.1) is the set of relative configurations of 3-vectors F and27

G of respective lengths F and G that are not equivalent under rotations in SO(3). From28

〈F,G〉2 ≤ G2F 2 we find that CFG can be immersed in the positive quadrant of R
3 with29

coordinates F 2, G2, and 〈F,G〉 as a filled cone shown in figure 4. Strata of CFG represent30

systems with different symmetries: the origin 0 corresponds to the unperturbed system,31

the open semiaxes F 2 > 0 and G2 > 0 of the boundary ∂CFG \ 0 represent respective32

single-field Stark and Zeeman perturbations, other points of ∂CFG \ 0 represent parallel33

fields, while points in the open quarterplane {〈F,G〉 = 0, F 2 > 0, G2 > 0} correspond34

to orthogonal fields, and the remaining interior points form a generic stratum. We further35

Proc. Roy. Soc. A (2007) 463, 1771–1790 preprint zones 2007-5-25 ms 07PA0028



6 K. Efstathiou, D. A. Sadovskiı́, and B. I. Zhilinskiı́
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F 2
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G2−F 2

Figure 4. Electric and magnetic fields F and G (left), the set of all their distinct configurations
(centre), and its constant s section (right).

notice that the parallel stratum is a disjoint union of two open sets representing parallel1

and antiparallel configurations and that the generic stratum is also split in two halves with2

〈F,G〉 > 0 and 〈F,G〉 < 0. It can be shown that systems which differ only in the sign of3

〈F,G〉 have different energies but are otherwise qualitatively the same. So we can assume4

〈F,G〉 ≥ 0.5

The parameter space CFG is further stratified into sets representing different k+ : k−6

resonant integrable approximations outlined in §1. Reducing the Keplerian symmetry, we7

obtain a reduced Hamiltonian Hn = H0 + nH1 + nH2 + . . . as function of six Keplerian8

invariants, the components of L and K, which generate the Poisson algebra so(4) and9

which are bound by the relations 〈K,L〉 = 0 and K2+L2 = n2. Note thatN is the Casimir10

of the above algebra, and that the unperturbed Hamiltonian corresponds to H0 = 2n. The11

relations between K and L imply that the reduced phase space is S
2 × S

2. The Keplerian12

normal formHn contains an overall factor n, which, as can be shown, reflects the presence13

in (1.1) of a sole singular term |Q|−1. After rescaling by n, the lowest nontrivial order (i.e.,14

the first average of the first order perturbation)15

H1 = gL1 − fbK1 − feK2 (3.1)16

in Hn/n is linear in (K,L) and has, therefore, a linear Hamiltonian flow. Here17

g = G (2/Ω)2, f = 3F (2/Ω)3, (fe, fb) = 3(Fe, Fb) (2/Ω)3, (3.2)18

with Ω =
√
−8E, are scaled field amplitudes. Note also that the combined amplitude19

s =
√

g2 + f2
b + f2

e =
√

g2 + f2 (3.3)20

plays the role of a universal parameter which should be kept small in order for all our21

normalisations to work4.22

Using scaled fields (g, fb, fe) we can construct a parameter space Cfg similar to CFG.23

Furthermore, it is natural to fix the combined amplitude s in (3.3), and to consider a con-24

stant s > 0 section of Cfg. Such section is a disk (see figure 4, right) which we can25

represent using dimensionless coordinates26

a2 = g2/s2 and d = gfb/s
2, such that d2 ≤ (1 − a2) a2, (3.4)27

as shown in figure 5, left. Exceptional points Z (for Zeeman limit with a = 1) and S (for28

Stark limit with a = 0) divide its boundary into parallel and antiparallel strata; orthogonal29

fields are represented by the interval (SZ), while the rest is the generic stratum.30

4 the use of such universal scalings goes back to Sadovskiı́ & Zhilinskiı́ (1998); Cushman & Sadovskiı́ (2000)
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Perturbations of the hydrogen atom 7

We now analyse the linear system with Hamiltonian (3.1) for fixed s > 0 and all1

admissible values of a and d. Rewritten in terms of the components of 3-vectors2

X = 1

2
diag(Rα−

, 1) (L + K) and Y = 1

2
diag(Rα+

, 1) (L − K),3

where cosα± = (g ± fb)/ω± and sinα± = ±fe/ω± with4

ω± =
√

(g ± fb)2 + f2
e = s

√
1 ± 2d,5

and Rα is the standard 2 × 2 matrix of counterclockwise rotation in a plane by angle α,6

Rα =

(

cosα − sinα

sinα cosα

)

,7

this Hamiltonian is58

H1 = ω−X1 + ω+Y1. (3.5)9

Note that X2 = Y2 = 1

4
n2 and that S

2 × S
2 can be regarded as the product of the10

‘X-sphere’ S
2
X and the ‘Y-sphere’ S

2
Y . Furthermore, components of X and Y define a11

standard Poisson algebra so(3)× so(3) on this S
2 × S

2, so that the flow of (3.5) defines an12

S
1 action which is a simultaneous rotation of S

2
X and S

2
Y about axes X1 and Y1 by angles13

ω−t and ω+t respectively.14

Definition 3. The perturbed hydrogen atom system with Hamiltonian (1.1) is in k− : k+15

resonance of order k = k− + k+ when16

k−ω+ = k+ω−, with k± ∈ Z>0 and gcd(k+, k−) = 1. (3.6)17

So for a k− : k+ resonant perturbation we have18

ω−

k−
=
ω+

k+

= ω =

√

2 (g2 + f2)

k2
− + k2

+

=
s
√

2
√

k2
− + k2

+

=
s

κ
(3.6′)19

which is satisfied when20

d = dk−:k+
= 1

2
(k2

+ − k2
−)/(k2

+ + k2
−). (3.6′′)21

In the constant s section of the parameter space Cfg (see figure 5, left), solutions to (3.6′′)22

are represented by parallel segments. The 1:1 solutions form the orthogonal fields stratum23

(SZ); segments with k− → k+ converge to (SZ), while segments with k− À k+ or24

k+ À k− accumulate near one of the two collapse points with f=|fb|=g (Sadovskiı́ et25

al., 1996), which correspond to special parallel and antiparallel configurations where one26

of the frequencies ω± vanishes and we have semisimple resonances 0 : 1 or 1 : 0.27

At first sight, since each resonance defines on the phase space S
2 × S

2 a specific S
1

28

symmetry action, every k− : k+ resonant system has to be considered separately using the29

normalised Hamiltonian H which includes specific k− : k+ resonant terms630

θ1 = Re θ, θ2 = Im θ, with θ = 4 (X2 + iX3)
k+(Y2 − iY3)

k− .31

5 alternatively, H1 can be represented in rotated Kustaanheimo-Stiefel coordinates (Cushman & Sadovskiı́,
2000; Efstathiou et al., 2004) as a harmonic 4-oscillator Hamiltonian with frequencies ±ω− and ±ω+.

6 it can be shown that H is a polynomial in n, X1, Y1, and θ1, while θ2 enters only in the Euler-Poisson
equations of motion; for the resonance of order k, θ1 and θ2 are of total degree k in components of X and Y.
Notice that θ is chosen so that θ1 and θ2 for k± = 1 agree with π2 and π3 of Cushman & Sadovskiı́ (2000).
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Figure 5. Systems with k− : k+ resonances in the constant s section (left) of the set of all possible
perturbations of the hydrogen atom by static electric and magnetic fields F and G. Manifestation
of k− : k+ resonances in the n-shell energy level structure of the parallel field system between the
Zeeman limit and collapse (right, taken from (Sadovskiı́ et al., 1996) with modifications). Fine and
bold solid lines show energies of quantum levels and of four Keplerian RE respectively.

On the other hand, since characteristics, such as monodromy, used in definition 2 are topo-1

logical in nature, they are continuous under sufficiently small deformations. As a conse-2

quence, we should be able to classify within the same family any exact k− : k+ resonant3

system and systems with linear frequencies4

ω± = s
√

1 ± 2 (dk−:k+
+ δ) ≈ s

(

k±κ
−1 ± κk−1

± δ +O(δ2)
)

(3.7a)5

for k± 6= 0, |d| < 1

2
and |δ| ¿ 1, i.e., outside the collapse regions, and

(ω∓, ω±) ≈ s
√

2
(

δ, 1 − 1

2
δ2 +O(δ4)

)

for d = ± 1

2
and 0 ≤ δ ¿ 1. (3.7b)

in the collapse regions where one of ω± nearly vanishes and the respective k± is zero.6

Approximating ω± by ω k± with reasonably small k− + k+, we rewrite (3.5) as7

H1 = ω µ+ ε(δ; k−, k+) ν, ε¿ ω, (3.8a)8

where ε depends on the detuning δ and the choice of the resonance, and9

µ = k−X1 + k+Y1 and ν = k−X1 − k+Y1 (3.8b)10

are the momentum of the k− : k+ resonance and its complementary momentum. The11

periodic flow ϕµ of the Hamiltonian vector field Xµ defines the S
1 symmetry of the exact12

k− : k+ resonance.13

Definition 4. Perturbed systems with Hamiltonian (1.1) and frequencies (3.7) are called14

detuned k− : k+ systems if the set of their regular tori can be interpolated using the regular15

T
3 bundle of the integrable system with first integrals (N,µ,H), where the momentum µ16

is defined in (3.8b) and the second reduced Hamiltonian H is obtained after normalising17

Hn with respect to the S
1 symmetry of the exact k− : k+ resonance.18

Definition 5. The set of all detuned k− : k+ systems is called k− : k+ zone.19
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Perturbations of the hydrogen atom 9

Naturally, systems within each zone can be classified on the basis of definition 2. Sev-1

eral further important aspects should be pointed out right away.2

Conjecture 1. For any k− : k+ and sufficiently small total perturbation s in an open3

interval Σ of R>0, the k− : k+ resonance zone contains an open domain of R
3. Specifically,4

for any k− : k+ and s ∈ Σ we can find a small interval ∆s 3 0, such that any system with5

frequencies (3.7) and δ 6= 0 in ∆s can be described as a detuned k− : k+ system.6

We can see from (3.7) and figure 5, left, that for fixed s > 0, zones correspond to horizontal7

stripes centred on the k− : k+ resonance lines so that |d − dk−:k+
| ≤ δmax. Their width8

can be defined as 2|δmax| when k+ + k− > 1 or δmax for collapse zones. Clearly, if δmax9

is finite, zones cover inadvertently many resonances of order higher than that of the zone10

resonance. (For example, the 1:1 zone would include all resonances of sufficiently large11

order and |k− − k+| ¿ k− + k+.)12

Conjecture 2. At any given small s > 0 and Keplerian action n > 0, resonances of13

sufficiently high order are not important for the qualitative classification of systems with14

Hamiltonian (1.1) in the sense of definition 2.15

In practice, our qualitative classification uses the normal form H truncated at some degree16

k in components of X and Y, and any resonances of orders higher than k are neglected17

automatically since their specific resonance terms θ1,2 do not appear in H.18

Conjecture 3. With growing ns > 0, an increasing number of higher order resonances19

becomes important, while the widths of the zones become smaller.20

Note that the analysis of the orthogonal fields system (Cushman & Sadovskiı́, 1999,21

2000), one of the first fundamental physical systems where monodromy was uncovered,22

relied on the assumption, which was later proven as a theorem by Rink (2004); Broer23

et al. (2007), that monodromy could be generalised to KAM systems via an integrable24

approximation obtained by normalisation. This theorem is necessary to study monodromy25

in practically all real physical systems, and in our context—in all exactly resonant k− : k+26

systems. Our conjectures here introduce yet another assumption and we believe that they27

can be proven using techniques similar to those of Rink (2004); Broer et al. (2007).28

To conclude and to encourage further physical and mathematical studies of zones, we29

like to draw attention to their very clear quantum manifestation, which has been de facto30

produced by Sadovskiı́ et al. (1996), but has not been analysed neither there nor—to our31

knowledge—later. In our figure 5, right, we reproduce the correlation diagram of Sadovskiı́32

et al. (1996), which represents n-shell energy levels of parallel fields systems with different33

ratios of 3nF/G. Since n ≈ 2/Ω, this ratio is equivalent to our f/g and in the fixed-s sub-34

space of Cfg (the disks in figures 4 and 5) the 3nF/G span of figure 5, right, corresponds35

to the segment of the parallel stratum between the Zeeman limit Z and the ↑↑ collapse36

point g = fb = f . As we depart from Z (where m-multiplets exhibit a visible second37

order Zeeman splitting), we can see that quantum energies diverge linearly with f/g and38

reassemble periodically and in different ways into multiplets of nearly degenerated levels.39

The k− : k+ resonant values of f/g, which are given by (3.6) and are indicated in fig-40

ure 5, right, by vertical dashed lines for several low order resonances, coincide perfectly41

with these structures. Furthermore, multiplet degeneracies also confirm these resonances.42

In each case we also have an interval of f/g values, i.e., a zone, within which the particular43

degeneracy of energy levels is well pronounced. The endpoints of these zones correspond44

approximately to the g/f values at which outer energy levels of neighbouring multiplets45

meet. It can be seen that zone widths decrease with increasing k− + k+.46
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4. Classification of perturbations of the hydrogen atom1

We now possess a general framework to classify all possible perturbations of the hydro-2

gen atom by small static external fields. Here we give a number of concrete examples. In3

each case, we normalise the first reduced Hamiltonian Hn : S
2 × S

2 → R for the second4

time and then analyse the resulting integrable system with reduced energy H. (Recall that5

Hn is a function of (X,Y) with principal order (3.5) composed of momenta X1 and Y16

which define S
1 rotations of respective individual spheres in S

2 × S
2.) Stratified EM im-7

ages of our systems have a number of common features. First note the images of four S
1

8

relative equilibria (RE) or nonlinear normal modes of the Keplerian symmetry, also known9

as Kepler ellipses, which correspond to equilibria of Hn (Sadovskiı́ & Zhilinskiı́, 1998).10

Keplerian RE with maximal |m| at given n are stable; other Keplerian RE can become11

complex unstable and in that case their preimage includes their stable and unstable mani-12

folds which form some kind of a pinched torus. Typical points on the external boundaries13

of the individual lower cells in the unfolding surfaces S̄EM represent T
2 RE of the com-14

bined action of S
1 symmetries associated with momenta N and µ; points on the branching15

walls represent bitori. Regular values lift to regular T
3 or to two T

3 for overlapping cells.16

(a) Nonresonant perturbations17

We consider first what happens when resonances are not important. This is generally18

possible for low ns and away from the 1:1 and collapse zones which are always present.19

When ω+ and ω− are incommensurate, we can normalise Hn with respect to both S
1

20

symmetries of (3.5). The resulting H Poisson commutes with both X1 and Y1 and is a21

polynomial in (X1, Y1). Its domain of definition is the closure Dn of the open square22

Dn := {(x1, y1) : |x1| < 1

2
n, |y1| < 1

2
n}. The Hamiltonian functions (X1, Y1) de-23

fine a momentum map of S
2 × S

2 onto Dn and serve as global actions: any point in Dn24

represents a regular torus T
3
n,x1,y1

whose basis cycles are defined by (N,X1, Y1). The25

functions (µ,H) define the specific energy-momentum map EMk−:k+
with values (m,h)26

which gives an immersion ψk−:k+
: Dn → R

2. Recalling §2, we realise that Dn is an27

unfolded lower cell. In the simplest case illustrated in figure 6, left, ψ is a diffeomorphism;28

in other situations, the surface H(X1, Y1) can typically fold so that its projection on the29

(m,h) plane is not injective and we have open domains in the range of EMk−:k+
where30

each point lifts to several points in Dn. Part of the boundary of these domains consists of31

caustics, or curves whose points represent regular fibres with extremal energy. Caustics32

may signal that the resonance is pertinent:33

Proposition 4.1. Caustics in the image of the k− : k+ energy momentum map are struc-34

turally unstable.35

In fact, for any even very small ε 6= 0, adding a k− : k+ resonance term εθ1 to H36

destroys a caustic typically so that the latter is replaced by a boundary representing periodic37

orbits S
1 and a branching line near that boundary representing bitori. This happens because38

any two regular fibres with the same EM image have the same energy and as we approach a39

caustic, they become very close in the phase space, thus opening the door for any however40

small resonance to destroy them. Under such resonance, regular T
2 preimages of caustic41

points disappear leaving a pair of periodic orbits, or nonlinear modes. The EM image of42

the stable mode remains at the boundary, while that of the unstable mode moves inside; the43

stable and unstable manifolds of the unstable mode form a bitorus.44
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Figure 6. Example BD of nonresonant perturbations: simple regular BD (left), and self-overlapping
BD with a caustic (centre,right).

(b) Structure of the 1:1 zone1

The 1:1 resonance can never be ignored and its zone is quite large because the 1:1 res-2

onance term θ1 appears in order H2 of the second normal form which comes immediately3

after the linear part H1. In this note, we remain—for simplicity—at the level of H2.4

Definition 6. Exactly resonant and detuned k− : k+ systems that remain qualitatively5

unchanged in the sense of definition 2 under sufficiently small variations of field parameters6

s > 0, a, and d within the k− : k+ zone are called structurally stable.7

Definition 7. Equivalent (in the sense of definition 2) systems form a dynamical stratum8

within their zone.9

In the parameter space Cfg, dynamical strata can be represented similarly to the sym-10

metry group action strata in figure 4, centre. We describe all dynamical strata of structurally11

stable systems in the 1:1 zone which can be characterised using H2. To find these strata12

we study systems with different parameters (a, d) within the zone using the standard tech-13

niques in (Cushman & Bates, 1997; Cushman & Sadovskiı́, 2000; Efstathiou et al., 2004),14

notably considering the topology of the families of energy levels of the reduced Hamilto-15

nian. Notice that the classes of integrable Hamiltonian systems, which we discuss in this16

section, are quite typical. Thus all of them were described earlier on the example of the17

quadratic spherical pendulum (Efstathiou, 2004, chapter 4.2 and figure 4.2); Waalkens et18

al (2004) discussed similar systems.19

The dynamical stratification of the 1:1 zone remains unchanged within a large interval20

of small s > 0 because θ1 is part of H2. So we can work with constant-s slices of Cfg,21

such as the one in figure 4, right, where the 1:1 zone can be represented as a stripe centred22

on the SZ line {d = 0, a ∈ [0, 1]}, see figure 7, left. Within this stripe, various strata23

correspond to points, open segments, or open 2-domains. The latter represent structurally24

stable systems A0, A1, B1, and A1,1 (figures 7, right, and 8) and are of primary interest25

to us. We describe also open segments A2 and B0 of SZ which represent typical systems26

within the class of systems with an extra Z2 symmetry. Notice that figure 7, right, shows27

only half of the 1:1 zone with d ≥ 0 because all strata are symmetric with respect to the28

SZ axis. However, since each of the strata B0, B1, and A1 has two disjoint parts, one near29

S and another near Z, we distinguish such parts by prime and double prime respectively.30

The H2 description of the dynamical stratification of the 1:1 zone can be summarised31

in the form of the genealogy graph in figure 7, right. Vertices of this graph represent (con-32

nected parts of) dynamical strata and edges correspond to typical paths along which struc-33

turally stable systems can be deformed from systems of one class into systems of another34
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Figure 7. Structure of the 1:1 zone. Different dynamical strata of the zone (left) correspond to ver-
tices of the genealogy graph (right). Vertical edges of the graph represent bifurcations with broken
symmetry of order 2, other edges correspond to Hamiltonian Hopf bifurcations. Two bold paths (left)
define BD families of detuned 1:1 systems; small ticks on the paths mark individual BD in figure 8.

class. In a constant s section of Cfg, adjacent vertices correspond to open connected do-1

mains which share a common boundary σ. A typical path γ which joins these domains,2

intersects σ transversely in a single generic boundary point c of σ which corresponds to a3

bifurcation. Any small deformation of γ does not change the family of systems it defines.4

The H2 approximation is in some cases insufficient to remove the degeneracy of bi-5

furcations represented by the edges of the H2 graph in figure 7, right. Specifically, A0A1,6

A1A1,1, andA1B1 represent Hamiltonian Hopf bifurcations (van der Meer, 1985; Duister-7

maat, 1998; Hanßmann & Van der Meer, 2005) which can be fully characterised only after8

going to order H3, while the analysis of A2B0 given by Efstathiou et al. (2004) requires9

H4. For some of these bifurcations, the small neighbourhood of the boundary between the10

H2 strata may be further stratified. We do not resolve such possible fine structures here.11

(i) Exactly 1:1 resonant systems12

Exactly 1:1 resonant systems, i.e., perturbations by strictly orthogonal fields, have a13

special discrete symmetry Z2 of order 2, which is a composition of rotation by π about axis14

F and reflection in the plane spanned by the vectors F and G, see figure 4 and discussion15

by Sadovskiı́ & Zhilinskiı́ (1998); Cushman & Sadovskiı́ (2000). These systems belong16

to a separate one-dimensional stratum SZ of the symmetry group action in the middle of17

the 1:1 zone, the specific feature of the 1:1 zone. The H2 description of the dynamical18

stratification of SZ was given by Cushman & Sadovskiı́ (1999, 2000); finer details were19

analysed by Efstathiou et al. (2004). There are two principal dynamical strata A2 and B0;20

A2 systems are represented by points with a2 ∈ (
√

3/2 − 1,
√

1/2 ), while B0 systems21

correspond to points on both sides of this central interval (figure 7). The Z point is singled22

out by symmetry, but not dynamically (at least at the H2 level) because the Zeeman limit23

system with F = 0 is of type B0. On the contrary, the S point is isolated in both senses.24

The A2 systems have monodromy. It is caused by the presence of an isolated singu-25

lar fibre called doubly pinched torus (Cushman & Sadovskiı́, 1999, 2000) whose image is26

given by the isolated critical EM value in figure 8, bottom left (for d = 0). Up to con-27

jugation in SL(3,Z), the matrix of this monodromy7 is diag(1, ( 1 0
2 1 )). The stratified EM28

image of a B0 system is shown in figure 8, bottom right. Its unfolding surface SEM has29

7 for any path Γ (cf. figure 9) the cycle associated with the Keplerian S1 symmetry transforms trivially, and
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three lower cells and is equivalent to the one shown in figure 1, top left. In both figures,1

the overlapping images of two lower cells are shaded dark. Regular values in the overlap2

region (such as b in figure 1) lift to two regular tori (b′ and b′′). Corresponding doublet3

quantum states in the spectrum of the quadratic Zeeman effect were discovered by Herrick4

(1982) and were related shortly after to classical dynamics by Solov’ev (1982, 1983). The5

latter work can be considered a predecessor of all studies based on H2.6

The Stark limit system (point S, a = 0) is exceptional: it has no resonance term θ17

and its BD has a caustic. Other exceptional 1:1 systems correspond to Z2 equivariant8

Hamiltonian Hopf bifurcations, which mark the transition between B ′
0 and A2 (on the9

S side) and B′′
0 and A2 (on the Z side). According to Efstathiou et al. (2004); Efstathiou10

(2004), these transitions involve additional bifurcations. So on both sides, B0 and A2 are11

separated by tiny one-dimensional dynamical strata of ‘transitional’ systems which lie near12

the respective critical values
√

3/2−1 and
√

1/2 of a2. Efstathiou et al. (2004) show BD’s13

of such systems in the bottom right of their figures 7 and 6.14

(ii) Detuned 1:1 resonant systems15

To learn about all possible detuned 1:1 systems, we traverse the 1:1 zone along the two16

paths which start in A2 and B0 as shown in figure 7. Figure 8 shows the two resulting17

BD families. Notice that the second path is chosen to start at Z and to stay on the parallel18

fields stratum8. This is justified because systems in the resulting family are dynamically19

equivalent (in the sense of definition 2) to neighbouring detuned systems in the interior20

of the 1:1 zone. Skewing F and G, we break the additional Z2 symmetry and move off21

the (SZ) stratum. As an immediate consequence, the A2 and B0 systems bifurcate into22

A1,1 and B1 respectively. In figure 7, left, A1,1 is shaded dark, and B1 consists of two23

wedge-like white regions B′
1 and B′′

1 near S and Z respectively. We describe briefly the24

bifurcations A2 → A1,1 and B0 → B1.25

In the case of A2, the isolated critical fibre separates into two singly pinched tori with26

different energies, while the corresponding isolated critical value o separates into two such27

values o′ and o′′ as illustrated in figure 9. We can see that the fundamental group π1 of28

the constant-n section of the set REM(A1,1) of the regular EM values of the detuned A1,129

system has two nontrivial generators Γ′ and Γ′′, which encircle o′ and o′′ respectively,30

while π1 of REM(A2) has only one nontrivial generator Γ which encircles o. Notice that31

Γ′ + Γ′′ = Γ encircles o′ and o′′ together. Since monodromy persists under small defor-32

mations, the images of Γ ⊂ REM(A1,1) and Γ ⊂ REM(A2) under the respective mon-33

odromy mappings are the same. On the other hand, monodromy maps both Γ′ and Γ′′ to34

the diag(1, ( 1 0
1 1 )) class, thus illustrating the ‘sign’ of Hamiltonian monodromy (Cushman35

& Vũ Ngo. c, 2002).36

In the case of B0, the surface S̄EM(B0) with three cells (figure 1, top left) changes into37

S̄EM(B1) with two cells (figure 2, centre) after the branching line detaches from the bound-38

ary and becomes a string of critical values inside the regular interior of an unfolded lower39

cell. The latter cell has non-local monodromy diag(1, ( 1 0
1 1 )). Note that both endpoints of40

the branching line of S̄EM(B1) lift to singular (nonsmooth) tori.41

the cycle basis in H1(T3
n,m,h

) can always be chosen so that the full 3×3 monodromy matrix has block-diagonal
form diag(1, M) and the sign of the offdiagonal element of M is positive

8 one reason for this choice is that many atomic physicists are well familiar with the studies of perturbations
by parallel fields with G À F which followed the work by Solov’ev (1982, 1983)
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Figure 8. Changes (of the constant n section) of the stratified EM images of the detuned 1:1 systems
with ns = 0.1 along the paths in figure 7, left. Value of the detuning parameter d is displayed in the
right bottom corner of each EM image plot. Filled circles mark Keplerian RE, solid and double lines
show sets of T

2 RE and bitori, regular values are shaded gray, overlapping cells have a darker shade.

Transition to A1,1 and B1 occurs at arbitrarily small detuning d 6= 0. Further ‘meta-1

morphoses’ of detuned 1:1 systems can be analysed quantitatively by computing the second2

normal form H and following the approach by Cushman & Sadovskiı́ (1999, 2000); Efs-3

tathiou et al. (2004). A fair idea of what goes on can be obtained by adding a small linear4

detuning term d ν to5

H1:1
2 = 1

8
s (1 − 2a2 − 2a4) ν2 − 1

4
s a2 θ1,6

computed by Cushman & Sadovskiı́ (1999, 2000) for the exact 1:1 resonance.7

As we move along either of the paths in figure 7, left, and increase the detuning, our8

systems undergo several qualitative changes until they become a plain A0 system. Each9

change involves a Hamiltonian Hopf bifurcation of one of the Keplerian RE with zero mo-10

mentum µ. The BD of the A0 systems is a ‘rectangle’ whose four vertices represent Ke-11
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Figure 10. Stratified EM images of the 1:2 systems with fractional bidromy (left) and fractional
monodromy (right). Bold dashes mark images of curled tori, other values are shown as in figure 8;
energy scales are adjusted.

plerian RE and whose interior is regular and simply connected. Such systems have global1

actions and in some sense, reachingA0 marks the outskirts of the zone where the resonance2

becomes unimportant (see §4a and figure 6, left).3

We can see in figure 8 that before reaching A0, systems A1,1 and B1 turn first into4

a system with one singly pinched torus represented by a single isolated critical value in5

the EM image. We call such systems A1; their stratum consists of two parts A′
1 and A′′

16

shown by light gray shade in figure 7. We can further notice from this figure that A1,1 can7

become either A′
1 or A′′

1 while B′
1 and B′′

1 turn into A′
1 and A′′

1 respectively. In the case of8

A1,1 (see figure 8), one of its two unstable Keplerian RE becomes stable and the respective9

isolated critical value joins the boundary. The B1 system turns into A1 after a subcritical10

bifurcation, which occurs when the smaller triangular lower cell shrinks to a point and11

becomes an isolated critical value. At the last stage, the remaining isolated critical value of12

A1 joins the boundary and A1 becomes A0.13

(c) Systems with higher resonances14

Unlike in the 1:1 systems, where the resonance term θ1 is part of the principal (quadratic)15

order H2 of the second normalised Hamiltonian, in systems with higher resonances, θ1 is16

relegated to order Hk−+k+
which is, typically, factor (ns)k−+k+−2 smaller than H2. This17

means that the study of higher resonances is, essentially, a three-parameter problem, where18

different values of ns should be considered along with those of a and d. With growing ns,19

the contribution due to the θ1 term increases. This explains why higher resonances may20

become important only at sufficiently large ns. This also suggests that systems with higher21

resonances can be studied as blowups of caustics in the image of the EM maps (see §4a)22

which are obtained after truncating H at orders below k− + k+.23

Another important difference from the 1:1 systems is the geometry of the reduced phase24
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spaces Pm, or the spaces of orbits of the k− : k+ resonant S
1 action. When k− + k+ > 2,1

these spaces have cusp singularities which make the analysis of intersections Pm ∩ {H =2

h}, the main tool in the construction of stratified EM images (Cushman & Sadovskiı́, 2000;3

Efstathiou et al., 2004), highly nonlinear. As a consequence, any complete description of4

higher resonance zones, and in particular of the 1:2 zone, the largest and the most important5

of them, becomes significantly more involved and deserves a separate study.6

In this note, we like to describe briefly two important typical representatives of exactly7

1:2 resonant systems. These systems have two parameters, the field ratio a with a2 ∈8
[

1

10
, 9

10

]

and the perturbation scale ns, which should be sufficiently smaller than 1. Our9

computations show that the coefficient in front of θ1 in H3 is positive for all a2 except10

for parallel fields when a2 is 1

10
or 9

10
and the coefficient is zero. In comparison to the11

1:1 case, the 1:2 systems are interesting due to the typical presence of specific ‘weakly12

singular’ fibres called curled tori (Nekhoroshev et al., 2002, 2006; Efstathiou et al., 2007).13

Their images under the EM map with fixed n form typically strings σ of critical values14

which Nekhoroshev et al. (2006) call ‘passable’ walls. Considering regular fibres T
3
a over15

a path Γ 3 a 6= c, which crosses such σ (transversely) at c, we can continue certain full16

index-2 subgroups of first homology groups of T
3
a across the weak singularity EM−1(c).17

One type of 1:2 systems exists for relatively large and small values of a2 in
(

1

10
, 9

10

)

,18

when the quadratic part H2 defines a well pronounced folded surface H(m, ν) illustrated19

in figure 6, centre. In the presence of θ1, the caustic in the energy-momentum projection20

of this surface blows up as shown in figure 10, left. We have a branching wall (double line)21

and a regular boundary (solid fine line) connected by two passable walls (dashed bold line).22

Neglecting, for the moment, the passable walls, this BD represents one self-overlapping23

unfolded lower cell of the type shown in figure 2, right. Hence we have a system with24

bidromy (Sadovskiı́ & Zhilinskiı́, 2007). The presence of passable walls signifies that we25

can only continue certain index-2 subgroups when we study this fractional bidromy.26

When we fix ns and sweep the interval of the remaining parameter a2 starting at its27

maximum value (i.e., on the Zeeman side), we observe a distant similarity in the deforma-28

tion of fixed-ns BD’s of exactly resonant 1:2 and 1:1 systems. In both cases, the energies29

of the two Keplerian RE with minimal absolute value 1

2
n|k− − k+| of momentum µ pass30

from the minimum to the maximum energy h at given ns. For intermediate values of a2,31

when the BD ‘inverts’ itself, we should expect complications.32

In the 1:1 zone, these complications result in A2 systems. In the 1:2 zone, different and33

somewhat more ‘rare’ systems are likely to exist for a2 near 0.43. According to our com-34

putations, the surface H2(m, ν; a
2) nearly flattens at these values of a2 and H3 becomes35

important even for moderate ns. The BD of such systems can be obtained after blowing36

up the caustic of the projected cubic surface in figure 6, right, and is shown in figure 10,37

right. Its unfolding surface has three sheets: a large main sheet to which two small trian-38

gular sheets called ‘kites’ or ‘pockets’, are glued along short branching lines. Each kite is39

a blowup of an ideal single point ending of the respective string of weakly critical values40

(bold dashes) ‘attached’ to it. Such ideal endings were studied by Nekhoroshev et al. (2002,41

2006); Efstathiou et al. (2007), who introduced fractional monodromy with matrices in the42

class
(

1 0

− 1
2

1

)

for a path Γ which crosses the string once and encircles its endpoint. Kites43

are generic realisations of the same situation. By the usual deformation argument, mon-44

odromy for a path Γ, which lies in the main sheet, encircles one of the branching lines, and45

crosses the attached string of weakly critical values once, should be diag
(

1,
(

1 0
1
2

1

))

.46

Proc. Roy. Soc. A (2007) 463, 1771–1790 preprint zones 2007-5-25 ms 07PA0028



Perturbations of the hydrogen atom 17

5. Conclusion1

In the 80 years since Pauli’s first attempt at classifying perturbations of the hydrogen atom2

by small and moderate static electric and magnetic fields (Pauli, 1926; van der Waerden,3

1968; Valent, 2003), the progress in this area consisted of qualitative studies of particular4

members of this three-parameter family of systems, notably the discovery of vibrational5

and rotational dynamics in the Zeeman system (Herrick, 1982; Solov’ev, 1982), of the6

collapse (or ‘crossover’) limit (Sadovskiı́ et al., 1996), and of monodromy in the orthogonal7

configuration (Cushman & Sadovskiı́, 1999, 2000).8

The implicit significance of the latter work was in showing essentially the way to the9

analysis of other perturbations. Unfortunately, this aspect remained underdeveloped by10

Cushman & Sadovskiı́ (1999, 2000); Efstathiou et al. (2004) and has not been appreciated11

duly. Without any appropriate framework and correct methodology, physicists were con-12

fined to very incomplete studies (Flöthmann et al., 1994; von Milczewski & Uzer, 1997;13

Main et al., 1998; Berglund & Uzer, 2001; Gekle et al., 2006). So one of our main goals14

here was to spell out the general approach to the classification of systems with Hamilto-15

nian (1.1), based on the two-step normalisation, the equivalence relation in definition 2, the16

appropriate choice of parameters, and the zone structure of the parameter space. Details on17

the techniques used in the analysis of resulting concrete integrable approximations within18

each zone can be found elsewhere (Cushman & Bates, 1997; Efstathiou, 2004; Efstathiou19

et al., 2004; Michel & Zhilinskiı́, 2001; Sadovskiı́ et al., 1996; Cushman & Sadovskiı́,20

1999, 2000; Nekhoroshev et al., 2006; Efstathiou et al., 2007).21

We ended the note by announcing a number of concrete results, notably a complete22

classification of 1:1 systems, and possible types of 1:2 systems, including the one with23

fractional monodromy. So pending a confirmation by quantum calculations and numeri-24

cal simulations, hydrogen atom in fields will—like with the usual ‘integer’ monodromy in25

the earlier study by Cushman & Sadovskiı́ (1999, 2000)—become the first known funda-26

mental physical system with fractional monodromy. A full account of these studies will be27

published in a series of forthcoming papers.28

We thank Professor John B. Delos and his post-graduate student Chris Schleif for drawing our atten-29

tion to this system, and for sharing their preliminary results (Schleif & Delos, 2007).30
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