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Abstract

We show that the hydrogen atom in orthogonal electric and magnetic fields has a special property of certain integrable
classical Hamiltonian systems known as monodromy. The strength of the fields is assumed to be small enough to validate the
use of a truncated normal forffisns which is obtained from a two step normalization of the original system. We consider
the level sets ofHsys on the second reduced phase space. For an open set of field parameters we show that there is a
special dynamically invariant set which is a “doubly pinched 2-torus”. This implies that the integrable Hamiltpidras
monodromy. Manifestation of monodromy in quantum mechanics is also discussed. © 2000 Elsevier Science B.V. All rights
reserved.

PACS:03.20++i; 32.60+i
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1. Introduction

Integrable Hamiltonian dynamical systems play a central role in both classical and quantum mechanics. They
are used extensively to approximate many generic nonintegrable systems and their quantum analogues. Among all
integrable Hamiltonian systems, the most popular are those which ghiibil action—angle coordinates and thus
the invariant tori have a trivial geometry. At the same time, integrable Hamiltonian systems with more complicated
toral geometry received much less attention in physics. Even when these systems appeared in applications, to a
large extent their geometry remained ignored. Since the general mathematical framework for studying integrable
systems with complicated geometry has been available since 1980 [1], it is now possible to close this gap and (i)
to uncover geometric complexity whichéemmonlypresent in many physically important integrable Hamiltonian
systems, (ii) to understaridevitabledynamical consequences of this complexity, (iii) to find its manifestation in
corresponding quantum systems, and finally (iv) to extend the analysis to perturbed systems.
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This paper studies the hydrogen atom in crossed fields, a fundamental atomic system. We consider an integrable
approximation. We give a detailed analysis of the geometry of this integrable approximation and show that it has a
property callednonodromywhich is the simplest obstruction to the existence of global action—angle coordinates. In
addition we show that monodromy is visible in the spectrum of the semiclassical quantization of the crossed fields
problem.

1.1. General description

In 1980 Duistermaat [1] introduced the concept of monodromy in the study of two degrees of freedom integrable
Hamiltonian systems. Since that time monodromy has been found and analysed in several integrable systems of
classical mechanics [2—11]. Geometrically, monodromy describes the global twisting of a family of invariant 2-tori
parameterized by a circle of regular values of the energy—momentum map of the integrable system. Its presence
is signalled by the existence of a singular fiber of the energy—momentum map which is topologically a “pinched
torus” [12]. Loosely speaking, if an integrable system has monodromy then it is impossible to label the tori in a
unique way by values of the actions.

Since invariant tori are at the foundation of semiclassical Einstein—Brillouin—-Kramers (EBK) quantization of
integrable systems, monodromy should manifest itself in the corresponding quantum systems [10,11,13-16]. Be-
cause monodromy is quite common in classical integrable systems of two degrees of freedom, it should have many
important physical implications in quantum mechanics.

In this paper we show that monodromy is present in the hydrogen atom in crossed magnetic and electric fields.
To study monodromy, we uset@&o step normalization procedure to obtain an integrable approximation. The first
step, called Keplerian normalization is well known [17—-23]. We use the recent computation in [24] as our starting
point. The second normalization was introduced in [25,26] for an analogous system. We focus on this step and
detail a simple averaging procedure which gives principal terms necessary for the analysis of monodromy. Higher
order normal form can be obtained by a more elaborate Lie series calculation [27]. Subsequently, we analyse the
geometry of the integrable system associated to the integrable truncated second norrglfomorder to show
that, in an explicitly given open subset of relative field strengths, the HamiltGignhas monodromy [10].

In the atom in fields problem our paper has many predecessors. In addition to the already cited work, we should
mention the work on problems with axial symmetry [28,29], which implicitly uses the concept of the second
reduced phase space. More importantly, we note [30—34] where the concept of a dyr&rsigametry (and its
corresponding “third” integral) is visibly present and is used in an analysis and [35—-37] and Appendix A.2 which
pioneers the second normalization study of our system. We will also compare our results to the early quantum study
by Solov'ev [38].1 In Section 5, we give a detailed survey of previous work and its relation to the results of this
paper. Below we provide an intuitive geometric description of monodromy.

1.2. Review of monodromy

In the past 20 years since the concept of monodromy was introduced into the study of integrable Hamiltonian
systems, it has not joined the arsenal of fundamental qualitative ideas used by the physics community. Perhaps the
reason for this is that monodromy uses the still insufficiently familiar ideas of global differential geometry. We
hope that the following intuitive discussion will explain how one can find and analyse monodromy in an integrable
system.

1n the notation of Solov'ey equals our or m, A corresponds to vectdt, and/; and/, to x andy.
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Fig. 1. Singly and doubly pinched torus: a homoclinic and heteroclinic connection of stable and unstable manifolds.

Consider a two degree of freedom Liouville integrable Hamiltonian system. It has two Poisson commuting
integrals: the Hamiltonia¥ and a momentuni. The phase curves of this system lie on a subset of afour-dimensional
phase space. Generically, this subset is a two-dimensional tofifs but it can also be a point (which is an
equilibrium) or a circleS! (which is a periodic orbit).

To understand the dynamics of our system, we begin by looking at the energy—momentum map

EM:P—R?:p— (H(p),J(p) = (h, j).

Corresponding to each given valie j) of the magE M is afibert€ M1 (h, j), whichis the set of all points in phase
space for which the value étM is (4, j). We will assume thath, j) is aregularvalue of the energy—momentum
map and that theh, j)-level set of €M is compact and connected. Then the fisevt—1(h, j) is a smooth
two-dimensional toruf(%’j). (Since this fiber is compact, by the Arnol’d-Liouville theorem [39] its connected
components are two-dimensional tori.)

What we want to do is to describe how these fibers fit togethéh ap runs over a parameterized subset of
the set of regular values. Suppose that this set of regular values is a small openl2-idighe range of the
energy—momentum map. The action—-angle coordinate theorem statésvtiat D) (which is the union of 2-tori
T(%’j), where(k, j) runs overD) has the topology ob x T2. In other words,

EMTND) — DTG ;) — (h, j)

is atrivial bundle over D with total space& M ~1(D), fiber T2, and base spade.

This simple geometric situation is greatly complicated if the 2-discontains a critical valuéh, j)¢rit and
the punctured dis®* = D — {(h, j)crit} lies in the set of regular values in the image&#. When we are
in this situation we say that the critical val@g, j)q it is isolated Under quite general conditions the singular
fiber F = EM™((h, j)erit) is a “pinched” 2-torus shown in Fig. 1. Dynamically, a singly pinched 2-torus is a
homoclinic connection of stable and unstable manifolds of the pinch point, whereas a doubly pinched one is a
heteroclinic connection of the stable and unstable manifolds of the two pinch points.

When the singular fibeF is a pinched 2-torus, the foliation GM~L(D*) by the 2-toriEM L, j) with
(h, j) € D* is nontrivial [12]. This can be understood by taking a cirélein D* and looking at the bundle
: EM~YT) — T overT'. Geometrically, every 2-torus bundle over a circle can be obtained by the following
construction. Consider the trivial 2-torus bundleDx T2 over the closed interval [@]. Form a circle in the base
of the bundle by identifying the end points of, [{J to a single point. To obtain a 2-torus bundle over this circle
identify the end 2-tor{0} x T2 and{1} x T2 by an invertible mapVf : T2 — T2, called themonodromy map
This map glues the end tori together after giving them a twist. For a lower dimensional example of this twisting
construction, think of a cylinder and a Mobius band. Start with a product,df][@nd an open interval (which is
a trivial bundle over [01]). A cylinder is formed by gluing the open intervals over the end points by the identity
map, while the Mdbius band is formed by using minus the identity as the gluing map.
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Fig. 2. Monodromy mag M ~1(po) - EM L(p1) : L,, — L, identifying once (left) and twice (right) twisted end 2-tois1~1(p1) and
initial 2-torus€ M ~1(po).

We return to considering our 2-torus bundleover the circlel’. Here is a theoretical method for computing its
monodromy map. Cut the circlé at a pointp and think of it as an interval whose closufehas end pointgg
andp1. Cover the interval by a finite set of pairwise overlapping intervdlson which the local actions given by
the action—angle coordinate theorem are defined. On the ovgriaf; 1 adjust the actions so that they agree. As
a result of this construction we have found the valug”s}, jz” 1y of the actions ap; starting with their values at
(jfo, jfo) at po by following the curvel’ — {p}. Care is nheeded because, as functions on the set of regular values
of the energy—momentum map, the actigiis j2) may bemulti-valued The actions(jlp", jzp") label the 2-torus
EM™Y(p;) fori = 1, 2. We think of the 2-toru§ M ~1(po) as the spacEZ/LPO, whereL ,, is the lattice generated
by evaluating the Hamiltonian vector field’sjl_po corresponding to the actioff" at the pointpg. (In other words,

two vectors inR? represent the same point on the 2-tofust~(po) if their coordinates differ by somiateger
linear combination of vectors in ,,.) Similarly, the 2-toru£ M L(py) is R2/Lp1. Consider the invertible linear
mapM which assigns to the generatorsiof, the generators df ,, (see Fig. 2). The ma}/ is given by an integer
2 x 2 matrix with determinant 1, which maps the 2-t0ﬂ1M_1(po) onto the 2-t0ru§M‘1(p1). Of course the
torusEM~L(p1) is the same as the tordsM ~(pg). Thus, M is the monodromy map of the bundl&. It is a
theorem [40] thaM has the form

(0 1)

wherek is the number of pinch points of the singular fibEr From the above discussion it is clear that the
monodromy matrix determines the global geometry of the 2-torus bundle around a pinched 2-torus sing#ar fiber
of the energy—momentum mapping.

1.3. More detailed description

We continue this introduction with a precise description of the crossed fields problem and give an outline of the
geometry of this system.

1.3.1. Hydrogen atom in orthogonal external fields
The Hamiltonian function of the hydrogen atom in the presence of constant orthogonal magnetic and electric
fields3 is

C
H =3P’ — = +FQ2+ 3G(Q2P3 — Q3P + §G*(Q5 + 0%) 1)
p

with subscripts (1,2,3) equal to (b,e,p) of Ref. [24]. The direction of the magnetic and electric fields are, respectively,
1 and 2;Qs are the coordinates in physical 3-spakds the 3-vector of conjugate momenta, ane- | Q] is the

2\We ignore all effects due to the spin of the electron, relativistic corrections, and we also simplify the two-body problem by considering an
infinitely heavy nucleus (while in reality,p/me ~ 1836).
3As in [24] and elsewhere we use atomic units.
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3-space length of. The first two terms in the right-hand side of (1) represent the Kepler Hamiltonian, the third is
the electrostatic potential describing Stark effect, and the two last terms describe the linear and quadratic Zeeman
effect. We introduce an “effective charg€”in order to have the same kind of parameters as in (1.1) of Ref. [25].
The Hamiltonian in [25] is equivalent to (1) with the quadratic Zeeman term omitted and thus can be interpreted as
a case when the magnetic field strengtlis small.

For F # 0 andG # 0 the Hamiltonian functiorH (1) has no strict continuous symmetry. However, it does have
a discreteZ, x Z; symmetry which will be taken into account in our analysis. More information on the symmetry
analysis can be found in Refs. [24,27].

1.3.2. Scheme of the analysis and geometry

To determine whether our Hamiltonian system has monodromy, we nornialjztwiceand study the resulting
integrable system. First we normalizéw.r.t. the Keplerian symmetry. Truncating at order 2 gives the first normal
form Hse which has the regularized Kepler Hamiltonidly = 2N as an integral of motion. (For our original
Hamiltonian system X is an approximate integral of motion). Removing the Keplerian symmetry from the first
normal form gives a two degree of freedom Hamiltonian systerﬁg%lx S,f/z, the product of two 2-spheres of
radiusn /2. Heren is the value of the Keplerian integral. The coordinates used to describe the first reduced phase
spaceS, /2 x S,/2 are the Hamiltonian functions corresponding to the vector fields generating tdg SMmetry
of Hp.

To perform the second normalization we look at the first order fimn Hs,¢ . Using the Poisson structure of the
872 x 8%, coordinate functions, we obtain a Hamiltonian vector figld, on 57, x SZ,, whose flow generates
anS! symmetry. This is an approximate symmetry of the first normal form. Averagfipgw.r.t. to the flow of
X1, gives the second normal forfisns. Note that#, is an integral of the Hamiltonian system corresponding to
the second normal form. We then investigate the geometry of the level sets of the energy—momentum mapping

EM:§2 % 82, — R%: p — (Heni(p). H1(p))

by reducing theS' symmetry to obtain a one degree of freedom systen®,on Because th&' action onM, =
Het ()N (Sf/2 X Sf/z) defined by the flow ok, has fixed points when = 0 andc = +n, we must ussingular
reduction[2] to obtain the second reduced phase spcge We show that for an explicitly given open set of field
parameters the (0,0)-level set&M (i.e., the set of all points iﬁf/z X Sj/z, whereH andHsnt both take the value
0), is a doubly pinched 2-torus iﬁ‘f/z X S,f/z. It follows that the energy—momentum mé&p1 has monodromy (see
[12]).

2. Review of first normal form
This section reviews the familiar grounds for obtaining the first normal form. Our treatment follows [24] and

explains the details of the field strength scaling. More explanation of the computation of the first normal form, its
finite symmetries and its expression in terms of theg8@ymmetry generators can be found in [24,27].

2.1. Regularization and rescaling

In order to perform normalization one needs to regularize the Hamiltonian (1) so that its bounded orbits
are defined for all time. Intuitively speaking, regularization removes the singularity from the Kepler
Hamiltonian.
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First we fix a valueE < 0 of the energy. We then rescale length and momentutghy) — (C~1Q, CP) so
that the effective charg€ in (1) becomes 1. After rescaling time by> €27, the Hamiltonian (1) becomes

1 E F G G?

1p2 2 2

2P?— 15— ot 502t 5ca(Q2Ps— QaPo) + 57(05+ 09 (2a)
Next we define a new timescale by &> (1/|Q|) dt. Eq. (2a) becomes

N 2 2E F
o=3lol(P C2>—1+@Q2IQI+2C2(Q2P3—Q3P2)|Q|+ gca(@3+0dlol. (2b)

We now regularize (2b) using the method of Kustaanheimo and Stiefel (KS). The KS method lifts the phase space
ToR3 = (R3 — {0}) x R3 (with canonical coordinate), P)) to the larger phase spaggR* = (R* — {0}) x R*
(with canonical coordinateg, p)) using the mapping

Mxs(p)
KS : ToR* - ToR®: (¢, p) — (MKs(q), fp) = (0.0, P,0). ©)
Here
q1 —q2 —q3 44
42 41 —44 —43
Mks = , r=10| = q>
43 44 q1 q2
q4 —43 42 —q1
In defining the KS map (3) we require
¢ =q1pa—q2p3+q3p2 —qap1=0. @)

Using the KS map, Eq. (2b) becomes

—2E 2F ) G?
1=3(3p?+ o2 —q* )+ g(qlqz —q3q4)q” + 2C2(q2p3 — q3p2)q° + — 8ca (4% + a2 (g5 + ad)q’.
)

After rescaling the variablegandp by (¢, p) — (g//, pJ/©), Wherew = 2./—2K /C, and rescaling time by
t — }ot, Eq. (5) becomes

4
— =H = 3(p?+ 4% + 3 f(q192 — 9398)%q% + 3g(q2p3 — q3p2)q® + £8%(a? + D) (g% + d5)q®  (6)
w

Choosing the scaled field parameters as

2\° 2\?
f:3F<a) =gf, g:G(a> = eq,

wherex andg are two dimensionless parameters satisfying

>0, pB=0, a®+p°=1 @)
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ande is a smallness parameter [24]the HamiltonianH (6) can be written as
H(q, p)=5(p* +¢°) + e(B(q142 — 4394)* + «(q2p3 — q3p2))q® + 36°(70°(4F + 4§ (43 + 45)a”)
=Ho+¢eH1 + %Esz, (8)

which is a perturbation of the 1:1:1:1 harmonic oscillator. Note that the KS function (4) is an integral of the
Hamiltonian vector fieldX g.

2.2. Normalization and reduction

Having written the Hamiltonian (8) as a perturbation of the harmonic oscillgpwe can carry out its normal-
ization using standard Lie series methods. This normalization procedure gives a canonical coordinate change on
TR* for which the transformed Hamiltonian Poisson commutes Wighup through second order termssnThe
truncated normalized Hamiltonian

Hing = Ho+ eH1 + %827-[2 9

also Poisson commutes with the KS integrg¥l) because the normalizing coordinate change commutes with the
S symmetry ofH (8) generated by the flow of ;. Thus, Hn¢ is invariant under th@2 symmetry generated by
Hp and¢.

The algebra of polynomials 6iR* which are invariant under thig? action is generated by

K1=3[p5+ 45+ p5+ 45 — (pT + 4D — (P5 + a3, (10a)
K2 = 3(p3pa — q1q2 — p1p2 + 43q4). (10b)
K3 = —3(q193 + 92q4 + p1p3 + p2pa), (10c)
L1 = 3(q2p3 — q3p2 + q1P4 — 44p1). (10d)
Ly = 3(q2pa+ q3p1 — q1p3 — qap2). (10e)
L3 = 3(q1p2 + q3pa — q2p1 — qap3), (10f)

together withHg and¢. The vectorsk = (K1, K2, K3) andL = (L1, Lo, L3) are nothing but the modified
eccentricity’ and angular momentum vectors for the Kepler Hamiltonian written in terms of the KS variables
(g, p). The aboveT 2-invariants satisfy two relations

K-K+L-L=3H! K-L=0. (11)
Thus the space A2 orbits onHo‘l(Zn) N ¢~1(0) is defined by
K?+ L% =n?, K-L=0. (12a)
Since (12a) is equivalent to
(K + L)% = n?, (K — L)% = n?, (12b)
41n the notation of [24jx = G,,8 = F, ande = t/n = S(w/2), whereS = C(2/Cw)%/G? + (3F(2/Cw))? is the scaled uniform
field intensity used as a smallness parameter. In [24] the symmetry geoupZ, with operationgee, o1, 02, 03) is calledG4 with operations

U, 12,0, T5).
5 Often called after Laplace—-Runge—Lenz, see [2], p. 400, note to p. 55.
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the T-orbit space is the product of two 2-sphesgs, x 57 ,. The Poisson structure dif , x 2, is determined
by the s@4) relations

{Li, L;} = ¢&jxLk, {Ki, K} = eijiLk, {Li, K;j} = &;jx K. (13)

In [24] the first normalized Hamiltoniaf,¢ in (9) is expressed in terms @f-invariant polynomials restricted to
53/2 X Sf/z. Rescaling time by — —tn and dropping the additive constaBt:2 — 1782/9) ¢ /4, we can writeHss
as

Hp = 2, (l4a)

H1=al1+ BKo, (14b)

Ho = 20’[3L3 + 2L5 + 3K? — 2KZ + 2(L5 — K2)] + 2aB(TKoL1 — LoK1) + £62(17K3 — 3L3).
(14¢)

3. Second normal form

In this section we show how to normalize the Hamiltori#g; of the first normal form once again using 8k
symmetry generated 1. We then reduce thiS' symmetry to obtain a one degree of freedom Hamiltoran
on a possibly singular second reduced phase spageWhenc = 0 we analyse the geometry of this one degree
of freedom systerft, o on the singular spac®, o. We find an open interval of values of the parametsuch that
the energy—momentum ma&p(sns, 1) has monodromy.

3.1. Calculation of the second normal form

In order to calculate the second normal form#fgs in (14a)—(14c), we make its first ordertefin = o L1+8K>2
the first basis element of the @ Poisson algebra (13). To do this we use the factdat g2 = 1 and define a
Poisson automorphisiii., K) — (T, V) with

al1+ BK2 BLy 4+ aKy
(T,V) = al —BK1 |, | K2 —BL1 . (15)
Ls, K3

Of course, the Poisson brackets for the components ahd V are the same as in (13) with and K replaced
by T andV, respectively. We can also work directly with the Poisson algebra generated by the components of
x = 3(T' +V)andy = 3(T — V), namely

x1=3T+V), x=35T+V2), x3=3(T3+Va), (162)
n=3T—-V), y=3T2-V2), yz3=3(T3—Va). (16b)
In terms of these variables, the first reduced phase sifgg& 53/2 is defined by the Casimirs

x% ~|—x§ +x§ = %nz, y% + y% + y% = %nz, a7
and the Poisson bracket satisfies the8se so(3) relations

{xi, x;} = €ijkxk, {vi, yj} = €ijkyr, {xi,y;j} =0. (18)
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After dropping the constarfilp = 2, rescaling the time by — ¢r, and then changing to variablés, y), the first
normalized Hamiltonian (9) up to first order becomes

Hint = H1+ 3eHo = T1 + 3eHo = (x1+ y1) + 3eHa, (192)
where
Ho=32a* — a® + D22+ D) + 0?1 — a®) (22 + ¥3) + SaB(1 — 4a®)(x1x2 — y172)
+2aB(x2y1 — x1y2) + 202 (x2y2 + x3y3) + F (1 — a)x1y1. (19b)

The vector field

Xpp = —Tome + T vl 0 (20a)
M= 38T2 28T3 33V2 23V3
0 0 0 0
— ya—— —_— e ya—— —_ 20b
x38x2+x28x3 y3ay2+yzay3 (20b)

has flow given by

1 0 0
@i(x,y) = (Rx,Ry), R =|0 cos —sinr |. (21)
0 sint cost

In other wordsg; defines ars! action onR3 x R3 which satisfieg,, = id and leaves the first reduced phase space
SZ/2 X Sf/z invariant. Thus, we may normaliZéq,; a second time. This can be done by a simple averagifigpof

n

along the orbits oX7;, namely

_ 1 2
Ha(x,y) = > Ho(pi(x, y)) dt. (22)
7 Jo
Thus to first order the second normalized Hamiltonian is
Hsnf = H1 + %87'227 (23a)
with

Ho(x, y) = §(20* — a? + HF +yD) + 3a?B2(x3 + x5 + y2 + ¥3) + LB%x1y1 + 202 (x2y2 + x3y3).
(23b)

This can be further simplified using (7) and (17) to
Ha(x,y) = (@* — 0 + HF + yD) + §n°a®B% + R B%x1y1 + 202 (x2y2 + x3y3). (23¢)

The normal formHgns retains only those terms(x, y) of 2 (a homogeneous polynomial (&, y) of degree 2)
which Poisson commute witHy, i.e., for whichX, (7 (x, y)) = 0. Sincefl, is constant on the integral curves of
X, it follows that#, is a second integral oty Thus(Hsns, H1) is a Liouville integrable system on the first
reduced phase spaﬁ‘%2 X S,f/z with coordinategx, y) and Poisson bracket (18). The energy—momentum map for
this integrable system is

EM 825 x 825 — R2: p— (Hsni(p). Ha(p)). (24)
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3.2. Reduction to one degree of freedom

Here, we analyse the integrable systéHyns, H1) by reducing theSt symmetry generated by using the
method ofsingular reductior2,25]. We thereby obtain a one degree of freedom system.

3.2.1. Second reduced phase space
First we use invariant theory to construct the second reduced space. The algebra of polynomfls &{
which are invariant under tH8" action defined by, (21) is generated by

1 =x1—y1= Vi, (25a)
7o = A(x2y2 + x3y3) = T# + T4 — VE — V2, (25h)
w3 = A(xzy2 — x2y3) = 2(T2V3 — T3V2), (25¢)
w4 =x1+y1="T1, (25d)
75 = A(x5 + x3), (25¢)
6 = 4(y5 + ¥3). (25f)

subject to the relation
7122 + 713? = nsme, 75, g > 0. (26)

Eq. (26) defines the spaceg@forbits onR?3 x R3. To find an explicit defining relation for the second reduced phase
space we note that thelevel set ofH1, which is given by

Hi=T1=x1+y1=c¢, |c|=<n, 27)

and (17), is gy -invariant submanifoladM, of Sf/z X Sf/z c R3 x R3. The second reduced phase spBgg is the
space ofp; orbits onM, and is defined in terms of invariant polynomials (25a)—(25f) by

T4 =c, (28a)
s = n? — (1 + 74)?, (28b)
e = n? — (w4 — 1), (28¢c)
7122 + 71?? = nsme, 75, T > 0. (28d)

(Egs. (28a)—(28c) come from expressing the defining equations (17) and (@¢)roferms of invariant polynomials
(25a)—(25f). These equations are complemented by the relation (26)). Using the relations in (28a)—(28d) to eliminate
the variabless, 5, andre, we see thaP, . is the semialgebraic variety definedRd with coordinatesny, 72, 73)

by
73+ 7% =[(n—0)? —7fll(n + 0)? — 7. (29a)
The values ofry, 2, andrz in (29a) are subject to the restrictions

Imil <n—lel,  |ml<n?—c%  |mal <n®—c2 (29b)

(The first restriction follows from the fact that for afy} < » and|r1| < n, use (17)) the two factors on the
right-hand side of (29a) cannot be both negative and hence they should be both positive.) From (29a) and (29b) we
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Fig. 3. The second reduced phase space.

can see that when @ |c| < n, the second reduced phase space is a smooth 2-spherejavken it is a point;
whenc = 0 it is a topological 2-sphere with two conical singular points shown in Fig. 3. The reaso®hlyas
two singular points is that th8! actiong; on Mg has two fixed pointgx, y) = %n(:tl, 0,0, F1,0,0). (The two
other fixed points of the, action onS,f/2 X S,f/z are(x,y) = :t%n(l, 0,0, 1,0, 0) corresponding t&P, +,, see
[24,27] for more details.)

3.2.2. Reduction of finite symmetries

As discussed in Ref. [24], the original Hamiltoni&h (1) has two distincZ, symmetries: one given by the
composition of momentum reversad, P) — (Q, —P) and rotation throughr around axisQ» of the electric
field F

01:(Q, P) —> (=01, 02, —03, P1, — P2, P3),
and the other given by a reflection in the plane orthogonal to @xisf the magnetic fields
02:(Q, P) —> (=01, 02, 03, —P1, P2, P3).

The two Z» actions commute and the total finite symmetry group of (1) is the gfgup Z, of order 4. Its third
nontrivial operation is

03: (0, P) — (Q1, 02, — 03, —P1, — P>, P3),

which is the composition of the momentum reversal and reflection in the plane spanned by the electric and magnetic
field vectors, see Fig. 4. Tracing these symmetries through the two reduction steps, we find that their action on the
invariantsry in (25a)—(25f) (and thus on the second reduced phase $hagés given by

o1 (w1, w2, w3) —> (=71, 72, T3), (30a)
02 (71, w2, M3) —> (=71, M2, —73), (30b)
03 : (1, w2, M3) — (71, W2, —73). (30c)

The orbit map of th&Z, subgroup generated by (30a) is given(ly, 72, 73) — (w, 72, 73), Where

w=n—|c))? -7 (31)
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Fig. 4. Action of the symmetry operations of tHe x Z finite symmetry group of the hydrogen atom in orthogonal fields on the vectors of
electric and magnetic fields andG. (Position ofG obtained without momentum reversal which se6ds> —G is shown by the dashed line.)

Thus the image oP, . under (31) is the semialgebraic variéty . defined inR? (with coordinategw, 7, 73)) by
7[22 + 713? =w(w+2n|c), 0<w<(®n—|c|)? (32)

When O< |c| < n, V, . is a smooth manifold with boundary at= (n — lc])2 which is diffeomorphic to a closed
2-disc; wherlc| = n itis a point; wherc = 0, the varietyV, o is a topological closed 2-disc with a conical singular
point, see Fig. 5. The remaininfp symmetries (30b) and (30c) induc&a action onV,, . generated by

(w, o, m3) — (W, w2, —73).

Theorbit spaceV? . of thisZ, action onV, . is the projection oV, . on the{rz = 0} plane (see Fig. 5, right), i.e.,

n,c

V0. is the image of the map
Vn,c - {7-[3 = O} : (w9 7[2’ 7T3) - (wv 7[23 O)

We call the spacé’no’c the full symmetry reduced spacé the second normal form. For comparison with earlier
work [25,26], we will also usé’,ﬂc which is the projection of the second reduced spce(Fig. 3) on thelwz = 0}
plane.

e 2

0 w n

Fig. 5. The variety, o (left) obtained as the orbit space of thg action (30a) on the second reduced phase spageFully symmetry reduced
phase spacé(noy0 (right) obtained as the orbit space of the x Z; action (30a)—(30c) on the second reduced phase spas@ Fig. 3. Vfo is
a projection of the variety, o (left) on therz = 0 plane.
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Fig. 6. Constant level sets &f,, o on VOO (left) and onP,?,0 (right) in the case whefb/a| > 1 (without monodromy).

n,

3.2.3. Reduced second normal form

The second normal form and the manifdlf). are invariant under the actiap (21). The restriction of{sn
(23a)—(23c) descends to a functitf . on P, ., called the reduced second normal form. Furthermore, the function
Hy o isinvariant w.r.t. th&Z, x Z> symmetry (30a)—(30c) of the problem and can therefore be regarded as a function
#,.. on the full symmetry reduced phase spatjéc. In other words}, . depends only oiZ, x Z; invariant
polynomialsz? (or w) andr2 (see Appendix A.3). In order to define the functitiy . on V,?. we expresssns
(23a)—(23c) in terms of the invariants, 1, andrng, fix the value ofr,4 to bec, and then change to the symmetry
coordinatew in (31). In this way we find

7:1,,,6 = amo + bw, a=a? b= % —a?®—a* (33)
Here we have used the relations
M4 =30+, =36 -7,

have rescaled time— %t, and have dropped the additive constant
1c%(6a* — 40 +7) + Sn?(4a’ + 8% — 3) + Zcnb

We note that (to our order of the second normal form) this constant term contains all the dependence on the values
of integralsn andc of the first and second normal forms. Even at the third order, the second normatfprm
remaindinearin 2 andw (see Appendix A.3).

3.3. Geometric analysis

We now analyse the geometry of the level sets of the second reduced norm&{fqrion the second reduced
phase spacg, . whenc = 0, i.e., whenP, .. is singular. It suffices to understand thdevel sets of?—N[n,o on the full
symmetry reduced spac@’o. There are two qualitatively different possibilities which are illustrated in Figs. 6 and
7. In these figures we also show the corresponding sets gnshe 0}-projection ofP, o. This latter representation
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Fig. 7. Constant level sets 61, o on V,?,o (left) and onP,Eo (right) in the case whefb/a| < 1 (with monodromy). Corresponding levels on
V.0 and P, o are shown in Figs. 3 and 5.

was used in Refs. [25,26]. Furthermore, whiru| < 1, the same level sets can be seen in Figs. 3 and5,@n
andV, o, respectively.

We now determine at what values of the parameter [0, 1] the slopegb/a| is less than 1. In other words, we
want to have a system of level sets of the kind shown in Fig. 7 where the 0-level ?iagooi[s a closed interval
one of whose end points is the singular pdiat 72) = (0, 0). Sincea = «? > 0, the condition that needs to be
satisfied is—a < b < a. From (33), we see that the parameter 0 must satisfy

—a2<—a4—a2+% <(x2.

The above inequalities become equalities whén= “/72 anda? = @ — 1. Hencgb/a| < 1if and only if

?eT= (% -1%). (34)
3.4. Reconstruction and monodromy

We now show how to reconstruct the geometry of the level sets of the second normal favfg foom the
geometry of the level sets of the second reduced Hamiltonian on the second reduced phaBggpaleavill use
the reduction map

M : Mo S S5 x S5 — Pao SRY: (x,y) > (ma(x, y), ma(x, y), w3(x, ), (35)

whose fiberl1=1(p) over a pointp in P, ¢ is a uniquey, orbit on My. If p is a nonsingular point oP, o, then
I~1(p) is a circle (i.e., a generig, orbit); whereas ifp is a singular point of, o thenTI~1(p) is a point, which
is fixed by the actiory;.

We carry out our reconstruction only whgnia| < 1. The treatment of the other case wiyefu| > 1is analogous
and is omitted. To follow the discussion please refer to Fig. 3 as well as Figs. 5 and 7which illustrate the lift from
Vncfo to P, 0. We begin by considering the case when the level sét,0f is a pointp. If p is anonsingularpoint of
P,,.0 (with coordinatesr; = 0 and|rz| = n), then after reconstruction we obtaimperiodic orbitS* = IT~(p) of
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Fig. 8. Possible generic deformations of the constant level sétg#f(33) whena/b ~ 1. All cases have an ext#p equivalent pair of relative
equilibria. In the leftmost situation (a) the double pinched torus is decomposed4ateguivalent pair of single pinched tori.

X7, on Mg which is also a periodic orbit af3_, sinceHsnt and#H1 Poisson commute. These periodic orbits are
called relative equilibria oK 1, If p is asingularpoint of P, o, then after reconstruction we obtain an equilibrium
point of X3, on Mo which is also an equilibrium point of 3.

We now look at the O-level set 61, 0. This level set contains the two singular poiptsand p1 of P, o. If we
remove these points, we obtain two cur@gsandC; which consist of nonsingular points &, ¢ and which are
each topologically an open interval. Over each poin€pthe fiber of the reduction mag (35) is a circle. Since
each(; is contractible inP, o — {po, p1} to a point, it follows thatfll—1(C;) (the set of all points iny which
map byTI to points ofC;) is diffeomorphic to a cylinde€; x S1. Thus, TT-1(C; U {po, p1}) is a cylinder with
each of its ends pinched to a point. The reconstrudf[dﬁ(?—t;%(O)) in My of the O-level ofH, o on P, o is the
union of two pinched cylinders with their end points identified two at a time to two distinct points. In other words,
after reconstruction, the O-level set of the second reduced Hamiltonian on the second reduced space is a doubly
pinched 2-torus iy (see Fig. 1, right). This doubly pinched 2-torus is the fiber over the (0,0) point in the range of
the energy—momentum mapM of the integrable systertHsns, #1). Thus the energy—momentum mép1 has
monodromy [12] when the values of lie in the intervalZ (34).

3.5. Monodromy of the generic second normal form

The careful reader should have noticed that the reduced second normaﬂlﬁf;r@S) truncated at order one
(which corresponds to second order of the first normal féfi) is not generic. Indeed, whea/b| = 1 the level
sets of?-lg])f are parallel to one of the edges‘@io (and thus the (Zorresponding level se n)f coincides with part
of P;?,o)' see Figs. 6 and 7. In a generic situation the level setsspfare slightly curved.

The two possible level sets of the geneHg. are illustrated in Fig. 8. The level sets near the edgeé= w of

V,EO can either curve “inward” as in Fig. 8(a) and (b) or “outward” as in Fig. 8(c) or (d). To find which situation
occurs in our problem, thieurth order of the first normal forr{s¢ (which corresponds to the third ordﬁéi)f of

the second normal form) should be computed (see Appendix A.3). Thedétihs,, b'nf andc’z2 in Hg])f ensure

that the level sets dftgl)f are curved. According to our fourth-order analysis [41] both the “inward” and “outward”
cases occur.

When|a/b| ~ 1andc = Othe generidjl;i)f has an extra pair af?-equivalent relative equilibria. These correspond
to a point of tangency of alevel setﬁﬁ)f with one of the edges dﬂl’n%. Asa/b changes the point of tangency moves
quickly to one of the endpoints of the edge and disappears. There are two bifurcations involved in this process.
At the first, theZ2-equivalent pair of relative equilibria appears from the singular poigts= 0, V1 = =£n (i.e.,

2 = w = 0) of the second reduced phase spBgg. At the second, this pair collapses to one of Zhesymmetric
relative equilibriaw = |72| = n. The first bifurcation is &' x Z2-symmetric Hamiltonian Hopf bifurcation [41],
whereas the second is a pitchfork bifurcation.
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When|a/b| ~ 1 andc = 0 (near the limits of the monodromy interval(34)) the topology of the level sets
of the genericHgsns (which lie nearjmz| = w) can be quite complicated. In particular, Fig. 8(a) shows how the
zero-level set which corresponds to the doubly pinched 2-torugginsee Fig. 7, splits into two singly pinched
2-tori. Even though the topology of the zero-level seﬂéﬁf is different from the topology of the zero-level set of

7—2&%, the monodromy doeasotchange becaus‘}ééﬁ)f and?flgi)f on Mg are smoothly homotopic and monodromy is a

homotopy invariant. Consequently, our geometric analysis of the nongeneric second nomﬁﬁgb'rsradequate
for determining the monodromy.

4. Quantum monodromy

Traditionally, manifestations of monodromy in quantum systems have been analysed using the quantum analogue
of the energy—momentum map [13-16]. The EBK quantization conditions for an integrable system select regular
sequences of invariant tori which correspond to quantum energy levels. The global structure of energy levels of the
guantum analogue of an integrable system with monodromy is quite particular and provides a very clear manifestation
of monodromy [10,11,13,14]. Locally, the energy levels (and the corresponding tori) form a regular lattice of points
in the range of energy—momentum mé&p1 and can be labelled by the values of quantized actions. However, if
monodromy is present, the structure of this lattice in the vicinity of the image of the pinched torus makes any global
labelling impossible.

4.1. Quantum analogue of the second normal form

The technique to construct the quantum analogue of the normalized Kepler Hamiltonian (of the first reduced
Hamiltonian# on 53/2 X S,f/z) is well known, see [42—44%. To construct the quantum analogﬁgnf of the
second reduced Hamiltoni&ﬂsnf(nf, 2) (33) we represent the latter in terms of components of the 3-vectord
yin (16a) and (16b) and then replacandy with their guantum analogues. The Poisson algebra (18) is the algebra
sw2) x su(2) of two angular momenta. It corresponds to the algebra of quantum angular momentum operators

['an5 fb] = i€apcXe, [)A’a’ }A’b] = igahcf’c’ ['an’ )A’b] =0, (36)

where{abg = {123 and [A, B] = AB— BA The Casimirs of this algebra aré andy? in (17). They are integrals
of the second normal form. Hence in quantum mecharits £2] = [Hsni, 2] = 0. The standard angular
momentum guantization gives

P2=32=jG+1, j=0313 ... . (37a)

Here j labels the natural @) representation of dimensiory 2+ 1. The(2; + 1)? quantum states with quantum
number; form ann shell of the perturbed hydrogen atom system with the number of states, when expressed in
terms of the principal quantum number

n=2R%>+3%=(1%2+V%=123,..., (37b)
beingn?. Consequently,

j=3m-1. (38a)
It follows from (17) that

F#=92=j(+D=F0*-1) =3N? (38b)

61n [42] authors used ~ a =2 — 22 — 2 as a field parameter.
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and that the classical value of the Kepler integ¥aik

neg =4/ (N2) =vn2—1. (38¢)

At the same time the quantum numberof the integral of motioril; = x;1 + y1 (the projection of the angular
momentum’ on the axis of the dynamic&! symmetry) takes all integer values in the interval

m={(T1)=my+my=-2j,...,2j=—(m—1),...,n—1 (39)
(Herem, andm, correspond to the projection operatdisandy, respectively.) The classical valu®f 71 equals
m. To find the quantized energies we solve a simple matrix problem for each valuataf fixed value of quantum
numbern. In the standard spherical harmonic bagis,, m, = Yjm,Yjm, With my + m, = m, we obtain a
Hermitian matrix of dimension 24+ 1 — m = n — m which can be further reduced if tt& x Z, symmetry is
taken into account.

The quantum analogue of the Hamiltonian

Hsnf = amp — bnlz (40a)
in (33) is the operator
Hont = 2a(EF5™ +5751) — b(d1 — $1)% (40b)

wherex* = %, +ix3 andy* = 3, + i3 are creation—annihilation operators. Using standard formulae [45,46], we
find

. - - 2
Hesnt Iﬂj,mx,my = 2a(tn-’1_xtmy 1,ij,m)[-i-l,my—l + tmxtr-riz_y 1/fj,mx—l,my-ﬁ—l) —b(my — my) wj,mx,myv (41)

where coef‘ficientst,ﬁE = ((j Fk)(j £k + 1))¥2. It can be seen that the valug +m, = m = cis preserved, the
matrix of Hsns is tridiagonal and our calculation is essentially a reproduction of [42].

4.2. Analysis of quantum energy—momentum map

Results of our computation far= 11 and the corresponding classical value gf= +/120 are shown in Fig. 9.
Black dots in this figure show the eigenvalues of the matr'ﬁ%gff in the basis witm = 11 andn = —10, ... , 10,
bold lines represent stationary pointsof o on P, o with n¢ = V/120. These lines limit the range of the classical
energy—-momentum mapM. The case with monodromy:(b = 0.4 anda? ~ 0.295) is shown on the left of
Fig. 9. We compare and analyse quantum energy—momentum map=fdrl and classicaf M for n¢ = +/120.

It can be seen that quantum energies form a 2-lattice in the ran§abfin the presence of monodromy this
lattice has goint defectiocated at the value &f M corresponding to the pinched torus. The type of the defect
is related to the number and type of the pinch points. To visualize this defect we can define an elementary cell of
the lattice and transport it along a path which lies entirely in the domain of regular val§esgt@nd goes around

"Thus in the case = 4 thec = m, +m, = 0 subspace is spanned by four functians, _, with j = 3 andm = -3, -3, 1, 3. The
matrix representation Gflsnf on this subspace is

-9 6a
6a —b 8a
8a —b 6a

6a —9
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Energy in units of 02n?
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Fig. 9. Quantum and classical energy—momentum map for quantum numb@f and classical valug,; = +/120. In the case with monodromy
(left) the position of the pinched torus is marked by a white circle and the deformation of the local lattice is shown by a sequence of shaded
quadrilaterals.

the defect (Fig. 9, left). We can easily follow the evolution of this cell because each small step to a neighbouring
cell is unambiguous. However, after making a tour our final cell dm¢match the original cell! The accumulated
deformation is described by the matrix

(o 1)

where 2 corresponds to the number of pinch points of the singular fiber of the energy—momentum map [40]. Thus
the lattice in Fig. 9 (left) cannot be labelled globally by two quantum numbers.

For comparison, we show on the right of Fig. 9 the results of the same calculatigh f00.158. In this case the
value ofa? lies outside the monodromy interv&land is close to the Stark limit whese= 0. The corresponding
energy level spectrum is quite similar to that in the quadratic Zeeman effect [47—49]. Two distinct regions in the range
of EM are clearly separated by the energy of an unstapkymmetric stationary point ¢¢,, .. In the lower region
the quantum lattice corresponds to that of a rotator with angular momentum quantum nuslen —1, . ... The
upper region corresponds to the double well 2-oscillator. Over each of the regions (except, perhaps, for a few levels
near their common boundary) there is a straightforward unambiguous labelling with two quantum numbers. From
(33) we can see that/a > —3, and that to the order used in our second reduced Hamiltdsjanthe structure at
b/a < —1is qualitatively the same as in Fig. 9, right, with the energy axis flipped.

The whole parametric family of M can be easily imagined if we note that in the Zeeman limit at 0 the
Hamiltonian®,, o has an absolute minimum at the singular popatandp; of P, o. As the value o&? increases, the
valueH, o(p1) = Hn.0(p2) also increases. Thus the double-well region shrinks. Wifer %«/@ — 1, Hp0(p1)
enters the (upper) rotator region. Here the pomtand p» become hyperbolic relative equilibria and their stable
and unstable manifolds connect. After reconstruction they form a double pinched ta¥gs in this region the
angular momentum quantization rule breaks down (Fig. 9, left}4{As(p1) continues to increase, it becomes an
absolute maximum whew? > +/2/2 (Fig. 9, right).

5. Comments on previous work on the crossed fields problem

Our methods, especially the analysis based on the second normal form can be used for a complete qualitative
study of the crossed fields system in all possible dynamical regimes. In particular, all invariant subsets (regular
tori, periodic orbits, etc.) and their bifurcations can be fully characterized and systematized. Many other perturbed
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Kepler systems can be studied in a similar way. As our purpose was to focus on monodromy, we have addressed
such a complete analysis but very briefly. Below we give more details on the applications of our methods and
interpret previously obtained results. This section is mostly destinated for atomic physicists who are aware of the
vast literature on the atoms-in-fields problem and want to place properly our present work. At the same time, though
far from being comprehensive, it can help mathematicians get a feeling of what has gone on in this particular field
of atomic physics during the past 20 years.

5.1. Parameterization schemes

When comparing classical and quantum results, we should be well aware of the difficulty presented by the two
different parameterization schemes (cf. Sections IIE and IVBL1 in [24]). In brief, we tend to use energy-scaled field
strengths in classical mechanics anscaled field strengths in quantum mechanics. In other words, in the classical
problem we work on the same energy level set of (1), whereas in the quantum problem we compute energies of the
states within the sameshell. Formally, the energy of our system can be found as follows. Remember that for the
initial KS Hamiltonian in (6) the energy is/é. Similar relation between the value of the Hamiltonian function and
o holds for the first and second normal form and should be used to find the valu@otl energy). If we take all
our rescalings properly into account and include all constant terms, this relation for the second norniéiform
in (33) is

T2 c]:(nz,rrz,c a)
’HSnfz 1118”|:an —b l (———a+a) 2+18 %ga—gai|+(n)2 n—lz
—;—Z(Sn)n—z-l-(sn) ;r?-i-"'————i-w, (42)

whereF comes from the third order term obtained in Ref. [27]s the value off{snf in (33) plus a constant, and
¢ = 1Sw[24]. (Note thatry, 74 = ¢, andr are scaled according to the degre@iandV, and since'?+ V2 = n?,

all dependence on the Keplerian actiois now absorbed in the formal series paraméte).) Eq. (42) leads to a
formal power series ian

S = (en) + 2(8n)2— - —(8}1)3— +- (43a)
Inverting (43a) gives

S 52 4
£=-— - 2c——}—(zc +1h) 3—c(8c —|—16h+}') 4 (43b)

and consequently,

2V -2E 2
=w= [1—-c—+(2c +1h)— ] (43c)
C n
(recall the discussion in Section 2.1). It follows that the energy is
c? S 53
E=_ﬁ |:l—c— 4(5 +h)——A—llc(7c2+3h+8]-')ﬁ+~-~] (43d)

In (43d) the unperturbed hydrogen atom energy is factored out. The smallness pataffidids a uniform field
strength parameter. lisshell definition can be obtained from the energy-scaled formulae in Section 3.1, if the KS
frequencyw is replaced by 2n so that
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The two definitions are equivalent in the unperturbed Kepler problem. In our case a simple replacement (44) gives
the principal order terms and is qualitatively correct. Accurate calculation requires the reparameterization of the
first normal form#zns using the value of instead ofw in the definition of scaled field strengths.

5.2. First normalization and relative equilibria

In the early analysis of the hydrogen atom in magnetic field (quadratic Zeeman effect) Keplerian symmetry was
averaged along the correspondiBYorbits [47,48,50]2 Later Levi—Civita regularization was implemented, the
resulting two-dimensional Hamiltonian was normalized to high orders, and quantized [43,44]. Full regularization of
the three dimensional system using Kustaanheimo-Stiefel method was introduced in Refs. [17—22]. Subsequently,
any hydrogen atom-in-fields system could be transformed in a regular perturbation of a 1:1:1:1 oscillator and
normalized straightforwardly using standard Lie series technique [51-53] to any required order. (As an alternative,
Moser’s regularization in [25,26] and Delaunay normalization in [54], both used to the first order, can be mentioned.)

The normal formH,s of the crossed fields problem was reported in [38] and later in [30-32]. However, in
subsequent work [35-37] the authors turned to the analysis of the second reduced problem. As in [33,34,38] the
reorientation(L, K) — (T, V) and the use of as the “third” approximate integral was the starting point of this
analysis (see Section 5.5). In that way the problem was made similar to the familiar cases wittS$ggtianetry
(Zeeman effect and parallel fields, see Section 5.3) and was analysed for each fixadofalyeseparately. The
authors of [30—32] considered the case# n which they fully analysed only for # 0. (They did not consider
the geometry of their system, and in particular the relative equilibria and the associated singulBfityg) On
the other hand, relative equilibria with= £n(P, .=+, is a point) and witle = 0 (singular point ofP, .—o) were
studied in Ref. [33,34F

A comprehensive study of these relative equilibria was presented in [24] where the position of the equilibria
on $? x S?, action and period of the corresponding periodic orbits, as well as reconstruction of these orbits in
the physical space of the Kepler problem were obtaemtitely on the basis of the first normalized system. The
techniques used in [24], namely invariant theory, full study ofShe S? geometry, analysis of the symmetry group
action, and Morse theory, make this work a direct predecessor of and a complement to our present study. Since [24]
dealt exclusively with four basic relative equilibria, no second normalization was required.

At the same time it should be remarked thktresults of [24] can be obtained straightforwardly from the second
normal form?Hgps. Thus to find the action integral along the periodic orbit with| = » in the KS space’; orbit
in Table 2 of [24]), we substitute the coordinates, m2) = (£n, 0) of the singular point orP, .—o in (42). We
obtain the formal series itn

S = en + 2(en)*(1 — a)(3a — 2) + O((en)°), (452)
whose inverse is

en =S — 2831 —a)(3a — 2) + O(S°). (45b)

8In the notation of these authors ([50], Table 1), angigis the coordinate along th8' orbit of the Keplerian symmetryiz o« n is the
corresponding action; they ugé = L2 which corresponds t§ (73 — 77 + n? + ).

9 The “elementary Kepler ellipses” or periodic orbits studied by these authors are four relative equilibria of the first normal form. The periodic
orbit S (they do not distinguish two symmetry equivalént orbits) has stabilizess in (30a)—(30c) and corresponds to the two singular points
of P, =0 (With 72 = 73 = 0 andwy = £n). The periodic orbitss_ (“downhill”) and S (“uphill”) are Z, x Z,-symmetric relative equilibria,
they correspond t@®, .+, (pointsmy = 72 = w3 = 0 andry = +n). See [24], Footnote 4, and Section 5.2.
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Using the relatiorr = %Sa) [24] we find the action along the orbit

Zi pdg=n= E[1 — %52B%(3a® — 2) + O(S)]. (45¢)
JT w

To reconstruct the orbit in the KS space we should first find the position of the equilibrium pdt0i$? using
the inverse second normal form transformation and then proceed as in Ref. [24].

Thus we conclude that the first normalized system is an intermediate stage in the analysis, which can be omitted if
the geometry of the two step reduction is given. Then the complete qualitative understanding of the dynamics of our
system can be obtained when all individual second normalized systems (with phaseRpaaerd Hamiltonians
H,..) are studied as one family.

5.3. Systems with addition&t-symmetry

The methods of geometrical and dynamical analysis presented in our papeeqpallyto any perturbed Kepler
problem with an additionab! symmetry as long as this additional symmetry commutes wittSHsymmetry of
the first reduction and induces the same diagonal action on the first reduced phas# sp&2% The additional
S symmetry itself can be exact or, as in our case, an approximate dynamical symmetry “imposed” by the second
normalization. The most obvious and widely studied case of such symmetry (complete bibliography on the subject
is very large, see [17-23,28,29,43,44,47-49] and other work cited there) is an axially symmetric system such as
hydrogen atom perturbed by only one field (magnetic or electric) or by two parallel fields. In this ce8eathien
on the 3-vectorK andL in the initial physical space of the Kepler problem is a simultaneous rotation about the
symmetry axis, or the field(s) axis (chosen as @Xishere orz elsewhere)

1 0 0
(K,L) = (RyK,RyL), Ry=|0 cosp sing
0 —sing cos¢

Such action is equivalent (conjugate) to (21). Consequently, there is a simple correspondence between our second
normalized system with integraisandT; = 74 = ¢ and a first normalized axially symmetric system with integrals
n andL1 = m, the projection of the angular momentum. In particular, to obtain invariant polynomials for the latter
system (see Appendix A.1) we should take (25a)—(25f) and simply subgtitug€) for (T, V).

Furthermore, one should note that second and first normalizations ussnieemallness parameterand in this
regard second normalized system an@itsymmetry come at no additional cost — they remain valid as long as the
first normal form does. Since first normalization is common to all perturbed Kepler systems we consider, it appears
that to the order of this approximation, tB&symmetry of our system and the str@tsymmetry mentioned above
are equivalent.

5.3.1. Reduction of finite symmetries

The finite symmetries which remain after the additioBalsymmetry is removed are system specific [38].
The parallel fields system [23] has only one reversing symn&tmyhich acts on invariants of the second reduced
system in the same way ag acts on(z1, 2, 3) in (30¢). The residual finite symmetry in the case of the Zeeman
effect (only magnetic field) and Stark effect (only electric fieldZisx Z» with action (30a)—(30c). Within our
framework these are two particular cases{« = 1 andb = —%’) and @ = 0), respectively. It should be noted that

10The initial unpublished version of this work is dated 1995. As in [23] and Appendix A.1 the authotsseséed invariants. Due to slightly
different choice of invariants:(vs 72) their orbifold has the shape of a smoothed tetrahedron, see Fig. 4 in [23], where such choice is dictated
by the concrete Hamiltonian linear gnand;.
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the symmetry of the corresponding original system is very different. Thus the pure Stark problem is symmetric with
regard to momentum reversal, p) — (g, —p) whoseimagein the ambient 3-space with coordinates, 72, 73)
is (30a) (in this limitr4 = K, andm1 = L»).

5.3.2. Orbifold method

A comprehensive analysis of symmetries of different possible perturbations of the Kepler problem (e.g. of the
hydrogen atom) was given k#hilinskii and Michel in Ref. [56]. After reducing the Keplerian symmetry4D
(n-shell approximation) these authors consider various symmetry group actions on the first reduced phase space
S? x S?. Using only group theory and invariant polynomials they reduce symmetries and represent the respective
reduced Hamiltonian functions on the space of orbits oothéold of the symmetry group action. We briefly apply
the approach of [56] to our concrete system.

In the presence of the additiorli symmetry the space of orbits or “orbifold is a three-dimensional algebraic
variety on which we can define and analyse our Hamiltoftag. To construct? we note that each orbit of tig
action onS? x 2 can be labelled by the values of four invarianis =2, 3, andr4 (which generate the ring of all
St invariant polynomials) subject to the restriction (29a), whefe= c. From this restriction we see immediately
that labelling of these orbits requires the values of ahfgeinvariants, such ag;, 2, andry, while for the fourth
invariantrs only the sign should be given. It follows th@tcan be embedded in Euclidean 3-space with coordinates
{m1, m2, ma}. Themwrs > 0 andzz < 0 points of © form two balls whose closure is the surfalees = 0}, which
using (29a) is defined by

75 —[(n = 70)? = 7{)[(n + 7a)* — 7] = 0. (46)

In coordinateqry, 72, 4} this surface resembles a square pillow (see Fig. 10, left). It is a 2-sphere with four
singular points, the fixed points of ti# action, wherers = 73 = 0 andry = +n or 74 = +n. The whole® is a
3-sphere with four singular points. Every point@fexcept these four lifts to a8t on S? x S2. The four points are
relative equilibria of the first reduced problem, they lift to four equilibrium pointStx S2.

In the presence of an additiongy symmetry which sendss — —m3 (typically a reversing symmetry such as
o3 in (30a)—(30c)), the sign of3 is not required. The two balls in the previous construction are identified. The
orbifold O has three kinds of points which lift either to one or two circles, or to a poir§for S?. This orbifold

Fig. 10. Orbit space of thg! x Z, action onS? x ? for ¢ > 0 andw; > 0. Bold line sections with constafff = 74 = ¢,n > ¢ > 0, show
images of second reduced phase spakgs {73 = 0} (left). Projection of the orbit space on tfre= 0} plane (centre). Projection of the orbit
space oS! A Z, x Z5 (right). Coordinatesy, ¢, ands are in units ofr, n andn?, respectively.
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is constructed in Section Il and Appendix A.3 of Ref. [56] and is used in Ref. [23]. The constant sections
of O are images of reduced phase spa@gs. We can foldO once more in order to fully reduc& x Z, (see Fig.
10, right, and compare to Figs. 6 and 7).

Our Hamiltonian itself can be expressed as a functiotmef 7o, 74). 11 Considering the topology of constant
level sets ofHgnf(r1, 72, m4) defined onO we can now analyse all reduced Hamiltonids. at once, see e.g.
[11,23,56]. In this way we can, to some extent, compensate for the necessity to consider individual second reduced
phase spaceB, . which, however, remain indispensable for the study of the dynamics of the second reduced system.

5.3.3. Dynamics on the second reduced phase space
All systems with additionaB' symmetry described above will have ts@mesecond reduced phase spa&e..
The dynamics of these systems can be described usisgthe oisson algebra of invariants, o, andrs restricted
to P,.., i.e., the Poisson structure of the second reduced system. This structure can be obtained in a straightforward
way from definitions (25a)—(25f) and the Poisson structur&or S? in (18), namely

{mimo}=2m3,  {ma,m} =21  {ma. ma}=4m®n®+c*—nd). (47)
Furthermore, the function

Vn.e(m1, M2, m3) = 75 + 75 — X2 .(nD) (48a)
with

X2 (tD)=(—c—m)n—c+m)n+c—m)n+c+m) >0, (48b)

whose 0-level defines the second reduced phase $hade (29a), is a Casimir of the algebra (47). Usifig . we
can rewrite (47) as

0Vn.c

{ﬂi,ﬂj}=€ijk#, (49)
and generate equations of motion as follows:

. 0Hsnf 0Hsnf aWn,c

ﬂizza—nj{ﬂi,n'j}zzeijkaTj P (50)
Thus for the second normal form

Hent = amy — b2 = h, (51)
we obtain

d2 2

(T”; = {{r{, Hsnt}, Hsnt} = 8[3(a® — b*)7y — 4bh+ a®(n® + *)nf — h* + a®(c® +n?)7], (52)
where we have usedsys = h andy, . = 0 to replacer; andxs. In terms of the new variable

o = 4a® — b)r? — §(bh+ a®(n® + 7)), (53a)

111n Section 5.3.2, we decomposed the generators of the ri8binfariant polynomials into two groupgrs, 2, 74} and{rs}, called principal

(or main) and aukxiliary invariants. Such decomposition is known as integrity basis [62], homogeneous system of parameters [63], or Hironaka
decomposition [64]. It is generally possible for Cohen—Macauley rings. Main invariants define the same set of coordaiateams ofO

while auxiliary invariant(s) distinguish different maps. Only degree 0 and 1 of auxiliary invariant(s) is necessary to express any polynomial in
the ring. In the case of the fuB! A (Z, x Z») symmetry the ring is freely generated bf, 72, andma; there are no auxiliary polynomials.
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this equation reads
$ = 6p? — go. (53b)

Its solution is the Weierstrass’ functign(z; g2, g3) [57].

5.4. Attempts to use a second reduced space in perturbed Kepler syster§i$ syithmetry: the asymmetric top
analogy

The angular momentum or asymmetric top interpretation of the perturbed hydrogen atom witBa=iar(metry,
and in particular of the quadratic Zeeman effect (QZE) with intedral= m was introduced in 1990-1991
in Refs. [18-21,28,29], where the second reduced Hamiltonian was represented on a 2-sphere. (Note that earlier
perturbation theory studies, such as [50], used “action—angle” variables, i.e., cylindrical coordinates, for their reduced
Hamiltonian.) This approach has been used extensively in Refs. [22,54,55]. We saw in Section 3.2.1 that the second
reduced spaceg, . is not alwaysdiffeomorphic to a 2-sphere and therefore, such angular momentum analogy calls
for comment. In essence, ti$# map used by these authorssisgularfor m = 0 (i.e.,c = 0). It is important to
understand the consequences of such singularity. To show once more that the axially symmetric perturbation of
the Kepler system studied in [18—22,28,29] is equivalent to our second normalized system (see Section 5.3) and to
uncover the above singularity, we construct an exp8itnap in terms of dynamical variables, >, andrs.

5.4.1. Action—angle coordinates

The Poisson algebra (47) resemble&$@andrny, 72, andrs resemble components of an angular momenium
More precisely, if we usdq = %nl [18-21] then (29a) suggests thatandrs depend on the conjugate anglas
cosy and sinp. That this is indeed the case and t(‘%\ﬁl, @) is an action—angle pair can be verified by tracing their
definition back to the KS coordinatég, p). This has been repeatedly demonstrated [18—22,30-32] with a slight
difference that our more general situation requires an adjustment @f tim coordinates to ensure thai andmy
are diagonal. The transformation performing this adjustment is given by the symplectic matrix

1 0 0 0 -1 0 O O

0 1 0 O 0 1 0 O
Ry - 001 0 0 0-10
1 R} O 00 1 0 0 0 1
— 4
Ue="15 R, 1 00 0 1 0 0 of (542)
RT 0O -1 0 O 0 1 0 O
10 0 1. 0 0 0 1 O
0O 0 0-1 0 O O0 1
whereR, is the 2x 2 rotation matrix
cos sin
RX=< X X), (54b)
—siny cosy
and angley is related tax andg in (7),
o = COS 2, B =sin2x. (54c¢)

In the new KS coordinates

T4 = $(—n1+ny —n3 +na), M1 = $(—n1+np+ nz — na), (55)
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wheren; = %(qi2 + pl?) are actions of the four oscillators. The other component® ahdV are quadratic forms

in new (¢, p) which are independent of, 8 and can be substituted into the definitionmefandns in (25b) and
(25c¢). After(q, p) are replaced by

gi = /2n;sing;,  pi=+/2njcos¢;, i=1,..., 4
we obtain
2 = X COSg, 3= XSing, ¢ =—¢1+ ¢2+ ¢3— ¢4, (56)
wherex? = ]_[l‘-‘zl(zm) equals (48b) ang is the angle conjugate I%ml in (55).
5.4.2. §? map of the reduced phase spage
The manner in which the authors of [18-21,28,29] map the second norma&izeghimetric) system on a sphere

is described as follows. The longitude coordinatis introduced in (56). We choose axig as vertical, use (29b),
and define the latitude so that

J1=3m1 = 3(n — |c|) cosp. (57a)
Substituting (57a) into (48b) gives

X2 =sin6%(n — |c)?[(n + |c)? — 72]. (57b)
It follows that the two other components must be

7 1 2 J 1 3
2 = = 9 3 = = .
2((n+ch2—nd)1/2 2((n+c))2 —n?)1/2

(57¢)

The map
Pyc— S2: (1, w2, 13) — (J1, J2, J3)

is, obviously, singular at = 0 andry1 = £1, where it compensates for the singularityRyf.. Using (47) we can
easily verify that/; do indeed generate an(& algebraJ;, J;} = s;jx Ji, with Casimir

JP=J24+ 02+ IZ =50 — e (°8)

and are, therefore, components of the angular momedtum

However, interesting and historically important the mapPgf. onto S? is, it is of limited value in our study
because it hides the singularity 8f .o (while bringing the(1 — 4J2)1/2 singularity into the Hamilton function
Hsni(J; ¢ = 0)). Due to the singularity of?, .o all S* symmetric perturbed Kepler systems apalitatively
different from the rotating rigid body. In technical terms, there is little if any simplification to gain from the transfer
of the classical or quantum system t&%awhile both the classical equations of motion B, (Section 5.3.3) and
guantization ofHgns present no special problems.

5.5. Classical studies of the crossed fields system based on the second average

In 1987 van der Meer and Cushman [25] considered the orbiting dust system and showed that the qualitative
analysis of this perturbed Kepler system should be based on second normalization. This, of course, is true for the
analogous crossed fields system (see Section 1.3.1). A complete analysis [27] base@{ g tbeeals that for
different relative strengths of the electric and magnetic fields all qualitatively different possible behaviours envisaged
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in [25] occur in this latter system. The original system of [25] is qualitatively equivalent to the case of the weak
magnetic field wheré/a > 1 (Fig. 9, right).

Second normalization of the crossed fields system was recently implemented (independently from [25]) by von
Milczewski et al. [35-37]. In fact these authors performed the same simple averaging as described in Section 3.1,
and their resulf2 differs from our#sns by a factor. They also implemented intuitivel\fa\1-like mapping which
they called “adiabatic diagram” (Figs. 1, 9 and 11 of [35—-37]). A comparison of our results to those of [35—-37]
shows how strikingly close physicists can get to uncovering profound geometric properties when relying on correct
intuition and substantial experience in their analysis of concrete Hamiltonian systems. It also shows how important it
is to complement “traditional” methods of analysis by mathematical techniques such as singular reduction, invariant
theory, and basic concepts from differential geometry and differential topology presented from a practical point of
view in Refs. [25,26].

The authors of [35—-37] focused on a particular type of motion whose trajectories either begin or end (or both) at
the originr = 0 in the physical 3-space because this type of motion is visible in the experiments on the real quantum
system [59-61]. In the regularized system, trajectories pass through theqegihin 4-space when the angular
momentum vanishes, see (10a)—(10f). We can easily find the image of the constant I&ve! 8dh the reduced
phase spac®, .. From definitions (15), (25a)—(25f) and, of course, restrictions (12a), (12b), (29a) and (29b) we
find that when. = 0

7T =akKjq, o= (2— 012)1(12 + (% = n?), (59a)
while
2
Kffnz— a2’ lc| < Bn. (59b)

Whena # 0 this gives a parabola

2

—_047_[12 + (¢ — n?). (59¢)

T =
A

Note that theL. = 0 level set inP, . depends on the orientation #f defined by the parameter Consequently,
for each given value ofy = ¢ the L = 0 set should be considered together with corresponding level sets of the
second reduced Hamiltonian functify,;(«). As can be seen in Fig. 11, tife-symmetric relative equilibrium

n2

-n2

-n -n/2 n/2 n -n -n/2 0 n/2 n -n -n/2 0 n/2 n

Fig. 11. Representation of tHe= 0 level set on the reduced phase spBge(r3 = 0 projection). Constant level sets”éjl,o withb/a = —0.4
(a ~ 0.684) are shown by bold black lines while the= 0 set is shown by a white line. This set is presentfofn < +/1 — a? ~ 0.729.
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Fig. 12. Invariant subspaces intersecting the: 0 set (shaded area) in the image of the energy—momentum map for different pardmeters
Quantum number and classical value. are the same as in Fig. 9.

with 71 = w3 = 0 andrz < 0 belongs to thé. = 0 set when satisfies (59b). Th&, symmetry of the equilibrium
corresponds t@» in (30a)—(30c) and corresponding mation is restricted to the reflection plapeQs) in the
initial physical 3-space.

We can see in Fig. 11 that other level set$4f¢ intersect the. = 0 set in four (or two) points o®, ., or do
not intersect it at all. The corresponding trajectories are not, of course, restricted to thé@aiirs). The level
set corresponding to the doubly pinched torus has fosr O points. Similar study can be done for other values of
¢ and the results can be represented in the image & MMemap. At eachr the upper and lower limits of the values
h of Hgni such thafHsns = h} N {L = 0} £ ¥ are defined byk; = 0 (relative equilibrium) and maximunk|
(maximums of the {L = 0} level set, see intersectiqi. = 0} N {w3 = 0} in Fig. 11), where the value G{gn;
reaches

Hsnf c?
a2n2 = —(1+b)(1+61)n2—ﬁz + 1+b —d.

In Fig. 12 the image of all level sets &fsy; which intersect thd. = 0 set is shown by the shaded area. This is
precisely the representation used in [35-37].

The geometry of the system is not analysed in [35—-37] and monodromy is not uncovered. The authors do not
reconstruct the inverse image &M albeit for an interesting special case resulting in a periodic orbit (Fig. 9a and
10a of [35—37]) and do not even relate the four relative equilibria of the first normalization (already introduced in
[33,34]) to the singularities in the image &M . Thus the two equivalent equlibria withr1, 72, ¢) = (£1, 0, 0) are
missing in the analysis in Section IlIA of [35—-37] even though the singularity®in their Fig. 1 clearly indicates
their presence and, in fact, the presence of the doubly pinched torus.

5.6. Comparison with early quantum calculations

Analysis of the quantum crossed fields problem goes back to 1983 when Solov'ev [38] analysed the energy
level system using an-shell second order perturbation theory. He realized that the first order problem remained
degenerate (indeed, for a given valuemotvhich Solov'ev calls; = n’ + n”, there arer — m states with the same
first order correctior (7T1)). He proceeded by diagonalizing his second order correction on the subspaskelf
functions with fixedm (Section 3 of [38]). His resulting zeroth order equivalent operatpr(Eq. (10) of [38])
is a direct quantum analogue of the second normal fatm (33) obtained by averagingms along the orbits
of XTl-

Later Braun and Solov'ev [42] calculated quantum energies\fpof [38] in essentially the same way as we
do above. Using the field strength ratio as a parameter they distinguished three different domains of the parameter
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Fig. 13. Correlation diagram. Thin lines show the evolution of quantum energies (eigenvalues of the magfix) afith quantum number
n = 11 and(Ty) = 0 between the Zeeman and Stark limits. Bold lines represent the energy of relative equilikija @fith classical value
ne = +/120 ande = 0. Dashed lines mark the monodromy inter¥al

values, including the one which we call the monodromy inte?véd4). The two relative equilibria corresponding
to the singular points oR, o appeared as singularities of the effective semiclassical “potefigly shown in Fig.
5 of [42]. When the value of the scaled field parametéwas contained in the intervdl, the authors associated
these singular points with a “quasibarrier”.

Fig. 13 illustrates the analysis of the energy level system carried out by authors of Ref. [42] (cf. Fig. 4). Since
the energy level structure is analysed separately for edahm), monodromy cannot be seen in this way. On the
other hand, one can clearly observe the correspondence between the quantum spectrum and the energies of relative
equilibria shown by bold lines. These lines give the limits of the quantum spectrum. In addition, they show the
threshold at which doublets of levels (corresponding to the double well 2-oscillator) appear/disappear near the Stark
and the Zeeman limit (to compare with the pure Zeeman limit see Figs. 2 and 3 of [49]).

6. Discussion

We have demonstrated explicitly that the problem of hydrogen atom in orthogonal (crossed) magnetic and
electric fields has the nontrivial property of monodromy. Our analysis develops geometric techniques which allow
monodromy to be studied in other problems involving the hydrogen atom in fields. We have paid proper attention
to the singularities of the second reduced phase space.

Our work raises a number of important questions. We have relied on normalization and attempted to extend the
phenomenon of monodromy to systems which are nonintegrable in principle but which still have most of their
KAM tori intact. Since this phenomenon is associated with the global organization of the whole family of invariant
tori, we have assumed that it is stable under small perturbations and have demonstrated that as such it exists in the
hydrogen atom in crossed fields. At the same time, more detailed understanding of monodromy, or rather of its
analogue in such systems remains to be achieved. In particular, we would be greatly interested in the analysis of
local action—angle variables for the Cantor sets of KAM tori surrounding the heteroclinic tangle which corresponds
to the doubly pinched torus of our integrable approximation. Since these KAM tori fit together into smooth families
of tori, the monodromy present in the integrable approximation survives perturbation and as such exists in the
hydrogen atom problem in orthogonal electric and magnetic fields when the parantiegein the intervall.
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A different group of questions is associated with “quantum monodromy”. Here again one should attempt to
generalize our methods to quantum systems whose classical analogues are not integrable, but which can be
treated within the framework of quantum perturbation theory. When applying the ideas of this paper to quan-
tum systems, one should be aware of differences between the classical and quantum normal form algorithms
[58].

Persistence of quantum monodromy under small perturbations is also a subject of study on its own. We are,
nevertheless, convinced that future studies of the hydrogen atom in crossed fields will reveal the energy level
structure which we obtained for the quantized integrable approximation and which is characteristic of all systems
with monodromy. Such studies can answer a very interesting question of how far this structure will persist with
increasing perturbation (energy).

Perturbed hydrogen atom and the crossed field system in particular [59—61] continue to attract consider-
able interest of experimentalists. Application of the idea of monodromy in experimental studies depends on
how the above questions are answered. We think that our system will become experimentally important pre-
cisely because it can, ideally, be “tuned” in and out of the intefvalf field parameterr, where monodromy
exists.
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Appendix A
A.1. Comparison of present work with [23,56]

Note the correspondence of invariant polynomials of$haction onS? x S?

Refs. [23,56] Present work
nu T4

nv T

n2e o + nf - nlz
nc in (6) of [23] %773

A.2. Comparison of present work with [38]

Similar to [38] the authors of [35—-37] ugescaled approach (which is more convenient for a quantum study, cf.
Section B1 of [24]) as opposed to the energy-scaling in the present paper. To higher order terms, i.e., when we set
n &~ 2/w, their notation corresponds to ours as indicated below
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J. von Milczewski et al. [35-37] Present work

Field strengths®3 and F G andF

c=1 ChargeC

(x, v, z) in physical 3-space (Q2, 03, 01)

p in physical 3-space Pin (1)

KS coordinatesi and moment#& 4-vectorsg andp

w andn Same, see (6),(12a) and (12b)

VectorsL andA L andK

VectorsJ andK (K £L)

a = 3nF/B ~ § .y

L andA T andV in (15)

J andK x andy in (16a) and (16b)

Value of L, ¢, value of Ty = 4

Parametey (a) in Eq. (25) b=y —1-0?

Q(y) baf —mo = —2Hue+ Ln — |c?, see(33)

P, and P, o2-symmetric relative equilibria withry = 0 andrs = +(1? — ¢?)

A.3. Invariant polynomials for various orders #fsn

It can be shown using invariant theory [27] that the ring of all polynomialdin 7>, T3, Vi, V2, V3) which are
invariant w.r.t. to thes' x Z, x Z, action onSf/2 X 53/2 is freely generated byro, V2, T1). Polynomials in the
kth order of the second normal forkisy; are of degreé + 1 in T's andV's. Consequently (cf. (25a)—(25f)), to third
orderHgps has the following terms

Order of Hgns Invariant polynomials

1 T

e T2, Vlz, le

&? moTy, VETL, T

e3 moTE, VETZ, T w2, moV2, (V2)?
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