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Abstract

We show that the hydrogen atom in orthogonal electric and magnetic fields has a special property of certain integrable
classical Hamiltonian systems known as monodromy. The strength of the fields is assumed to be small enough to validate the
use of a truncated normal formHsnf which is obtained from a two step normalization of the original system. We consider
the level sets ofHsnf on the second reduced phase space. For an open set of field parameters we show that there is a
special dynamically invariant set which is a “doubly pinched 2-torus”. This implies that the integrable HamiltonianHsnf has
monodromy. Manifestation of monodromy in quantum mechanics is also discussed. © 2000 Elsevier Science B.V. All rights
reserved.

PACS:03.20.+i; 32.60.+i
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1. Introduction

Integrable Hamiltonian dynamical systems play a central role in both classical and quantum mechanics. They
are used extensively to approximate many generic nonintegrable systems and their quantum analogues. Among all
integrable Hamiltonian systems, the most popular are those which admitglobal action–angle coordinates and thus
the invariant tori have a trivial geometry. At the same time, integrable Hamiltonian systems with more complicated
toral geometry received much less attention in physics. Even when these systems appeared in applications, to a
large extent their geometry remained ignored. Since the general mathematical framework for studying integrable
systems with complicated geometry has been available since 1980 [1], it is now possible to close this gap and (i)
to uncover geometric complexity which iscommonlypresent in many physically important integrable Hamiltonian
systems, (ii) to understandinevitabledynamical consequences of this complexity, (iii) to find its manifestation in
corresponding quantum systems, and finally (iv) to extend the analysis to perturbed systems.
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This paper studies the hydrogen atom in crossed fields, a fundamental atomic system. We consider an integrable
approximation. We give a detailed analysis of the geometry of this integrable approximation and show that it has a
property calledmonodromywhich is the simplest obstruction to the existence of global action–angle coordinates. In
addition we show that monodromy is visible in the spectrum of the semiclassical quantization of the crossed fields
problem.

1.1. General description

In 1980 Duistermaat [1] introduced the concept of monodromy in the study of two degrees of freedom integrable
Hamiltonian systems. Since that time monodromy has been found and analysed in several integrable systems of
classical mechanics [2–11]. Geometrically, monodromy describes the global twisting of a family of invariant 2-tori
parameterized by a circle of regular values of the energy–momentum map of the integrable system. Its presence
is signalled by the existence of a singular fiber of the energy–momentum map which is topologically a “pinched
torus” [12]. Loosely speaking, if an integrable system has monodromy then it is impossible to label the tori in a
unique way by values of the actions.

Since invariant tori are at the foundation of semiclassical Einstein–Brillouin–Kramers (EBK) quantization of
integrable systems, monodromy should manifest itself in the corresponding quantum systems [10,11,13–16]. Be-
cause monodromy is quite common in classical integrable systems of two degrees of freedom, it should have many
important physical implications in quantum mechanics.

In this paper we show that monodromy is present in the hydrogen atom in crossed magnetic and electric fields.
To study monodromy, we use atwo step normalization procedure to obtain an integrable approximation. The first
step, called Keplerian normalization is well known [17–23]. We use the recent computation in [24] as our starting
point. The second normalization was introduced in [25,26] for an analogous system. We focus on this step and
detail a simple averaging procedure which gives principal terms necessary for the analysis of monodromy. Higher
order normal form can be obtained by a more elaborate Lie series calculation [27]. Subsequently, we analyse the
geometry of the integrable system associated to the integrable truncated second normal formHsnf in order to show
that, in an explicitly given open subset of relative field strengths, the HamiltonianHsnf has monodromy [10].

In the atom in fields problem our paper has many predecessors. In addition to the already cited work, we should
mention the work on problems with axial symmetry [28,29], which implicitly uses the concept of the second
reduced phase space. More importantly, we note [30–34] where the concept of a dynamicalS1 symmetry (and its
corresponding “third” integral) is visibly present and is used in an analysis and [35–37] and Appendix A.2 which
pioneers the second normalization study of our system. We will also compare our results to the early quantum study
by Solov’ev [38].1 In Section 5, we give a detailed survey of previous work and its relation to the results of this
paper. Below we provide an intuitive geometric description of monodromy.

1.2. Review of monodromy

In the past 20 years since the concept of monodromy was introduced into the study of integrable Hamiltonian
systems, it has not joined the arsenal of fundamental qualitative ideas used by the physics community. Perhaps the
reason for this is that monodromy uses the still insufficiently familiar ideas of global differential geometry. We
hope that the following intuitive discussion will explain how one can find and analyse monodromy in an integrable
system.

1 In the notation of Solov’evq equals ourc orm,A corresponds to vectorK, andI1 andI2 to x andy.
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Fig. 1. Singly and doubly pinched torus: a homoclinic and heteroclinic connection of stable and unstable manifolds.

Consider a two degree of freedom Liouville integrable Hamiltonian system. It has two Poisson commuting
integrals: the HamiltonianH and a momentumJ . The phase curves of this system lie on a subset of a four-dimensional
phase spaceP . Generically, this subset is a two-dimensional torusT2, but it can also be a point (which is an
equilibrium) or a circleS1 (which is a periodic orbit).

To understand the dynamics of our system, we begin by looking at the energy–momentum map

EM : P → R2 : p → (H(p), J (p)) = (h, j).

Corresponding to each given value(h, j)of the mapEM is a fiberEM−1(h, j), which is the set of all points in phase
space for which the value ofEM is (h, j). We will assume that(h, j) is aregularvalue of the energy–momentum
map and that the(h, j)-level set ofEM is compact and connected. Then the fiberEM−1(h, j) is a smooth
two-dimensional torusT 2

(h,j). (Since this fiber is compact, by the Arnol’d–Liouville theorem [39] its connected
components are two-dimensional tori.)

What we want to do is to describe how these fibers fit together as(h, j) runs over a parameterized subset of
the set of regular values. Suppose that this set of regular values is a small open 2-discD in the range of the
energy–momentum map. The action–angle coordinate theorem states thatEM−1(D) (which is the union of 2-tori
T 2
(h,j), where(h, j) runs overD) has the topology ofD × T2. In other words,

EM−1(D) → D : T 2
(h,j) → (h, j)

is atrivial bundleoverD with total spaceEM−1(D), fiberT2, and base spaceD.
This simple geometric situation is greatly complicated if the 2-discD contains a critical value(h, j)crit and

the punctured discD∗ = D − {(h, j)crit} lies in the set of regular values in the image ofEM. When we are
in this situation we say that the critical value(h, j)crit is isolated. Under quite general conditions the singular
fiber F = EM−1((h, j)crit) is a “pinched” 2-torus shown in Fig. 1. Dynamically, a singly pinched 2-torus is a
homoclinic connection of stable and unstable manifolds of the pinch point, whereas a doubly pinched one is a
heteroclinic connection of the stable and unstable manifolds of the two pinch points.

When the singular fiberF is a pinched 2-torus, the foliation ofEM−1(D∗) by the 2-toriEM−1(h, j) with
(h, j) ∈ D∗ is nontrivial [12]. This can be understood by taking a circle0 in D∗ and looking at the bundle
5 : EM−1(0) → 0 over0. Geometrically, every 2-torus bundle over a circle can be obtained by the following
construction. Consider the trivial 2-torus bundle [0,1] × T2 over the closed interval [0,1]. Form a circle in the base
of the bundle by identifying the end points of [0,1] to a single point. To obtain a 2-torus bundle over this circle
identify the end 2-tori{0} × T2 and{1} × T2 by an invertible mapM : T2 → T2, called themonodromy map.
This map glues the end tori together after giving them a twist. For a lower dimensional example of this twisting
construction, think of a cylinder and a Möbius band. Start with a product of [0,1] and an open interval (which is
a trivial bundle over [0,1]). A cylinder is formed by gluing the open intervals over the end points by the identity
map, while the Möbius band is formed by using minus the identity as the gluing map.
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Fig. 2. Monodromy mapEM−1(p0) → EM−1(p1) : Lp0 → Lp1 identifying once (left) and twice (right) twisted end 2-torusEM−1(p1) and
initial 2-torusEM−1(p0).

We return to considering our 2-torus bundle5 over the circle0. Here is a theoretical method for computing its
monodromy map. Cut the circle0 at a pointp and think of it as an interval whose closureI has end pointsp0

andp1. Cover the intervalI by a finite set of pairwise overlapping intervalsIi on which the local actions given by
the action–angle coordinate theorem are defined. On the overlapIi ∩ Ii+1 adjust the actions so that they agree. As
a result of this construction we have found the values(j

p1
1 , j

p1
2 ) of the actions atp1 starting with their values at

(j
p0
1 , j

p0
2 ) atp0 by following the curve0 − {p}. Care is needed because, as functions on the set of regular values

of the energy–momentum map, the actions(j1, j2) may bemulti-valued. The actions(jpi1 , j
pi
2 ) label the 2-torus

EM−1(pi) for i = 1,2. We think of the 2-torusEM−1(p0) as the spaceR2/Lp0, whereLp0 is the lattice generated
by evaluating the Hamiltonian vector fieldsX

j
p0
i

corresponding to the actionjp0
i at the pointp0. (In other words,

two vectors inR2 represent the same point on the 2-torusEM−1(p0) if their coordinates differ by someinteger
linear combination of vectors inLp0.) Similarly, the 2-torusEM−1(p1) is R2/Lp1. Consider the invertible linear
mapM which assigns to the generators ofLp0 the generators ofLp1 (see Fig. 2). The mapM is given by an integer
2 × 2 matrix with determinant 1, which maps the 2-torusEM−1(p0) onto the 2-torusEM−1(p1). Of course the
torusEM−1(p1) is the same as the torusEM−1(p0). Thus,M is the monodromy map of the bundle5. It is a
theorem [40] thatM has the form(

1 k

0 1

)
,

wherek is the number of pinch points of the singular fiberF . From the above discussion it is clear that the
monodromy matrix determines the global geometry of the 2-torus bundle around a pinched 2-torus singular fiberF

of the energy–momentum mapping.

1.3. More detailed description

We continue this introduction with a precise description of the crossed fields problem and give an outline of the
geometry of this system.

1.3.1. Hydrogen atom in orthogonal external fields
The Hamiltonian function of the hydrogen atom in the presence of constant orthogonal magnetic and electric

fields2,3 is

H = 1
2P

2 − C

r
+ FQ2 + 1

2G(Q2P3 −Q3P2)+ 1
8G

2(Q2
2 +Q2

3) (1)

with subscripts (1,2,3) equal to (b,e,p) of Ref. [24]. The direction of the magnetic and electric fields are, respectively,
1 and 2;Qs are the coordinates in physical 3-space,P is the 3-vector of conjugate momenta, andr = |Q| is the

2 We ignore all effects due to the spin of the electron, relativistic corrections, and we also simplify the two-body problem by considering an
infinitely heavy nucleus (while in realitymp/me ≈ 1836).

3As in [24] and elsewhere we use atomic units.
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3-space length ofQ. The first two terms in the right-hand side of (1) represent the Kepler Hamiltonian, the third is
the electrostatic potential describing Stark effect, and the two last terms describe the linear and quadratic Zeeman
effect. We introduce an “effective charge”C in order to have the same kind of parameters as in (1.1) of Ref. [25].
The Hamiltonian in [25] is equivalent to (1) with the quadratic Zeeman term omitted and thus can be interpreted as
a case when the magnetic field strengthG is small.

ForF 6= 0 andG 6= 0 the Hamiltonian functionH (1) has no strict continuous symmetry. However, it does have
a discreteZ2 × Z2 symmetry which will be taken into account in our analysis. More information on the symmetry
analysis can be found in Refs. [24,27].

1.3.2. Scheme of the analysis and geometry
To determine whether our Hamiltonian system has monodromy, we normalizeH (1) twiceand study the resulting

integrable system. First we normalizeH w.r.t. the Keplerian symmetry. Truncating at order 2 gives the first normal
form Hfnf which has the regularized Kepler HamiltonianH0 = 2N as an integral of motion. (For our original
Hamiltonian system 2N is an approximate integral of motion). Removing the Keplerian symmetry from the first
normal form gives a two degree of freedom Hamiltonian system onS2

n/2 × S2
n/2, the product of two 2-spheres of

radiusn/2. Heren is the value of the Keplerian integralN . The coordinates used to describe the first reduced phase
spaceSn/2 × Sn/2 are the Hamiltonian functions corresponding to the vector fields generating the SO(4) symmetry
of H0.

To perform the second normalization we look at the first order termH1 inHfnf . Using the Poisson structure of the
S2
n/2 × S2

n/2 coordinate functions, we obtain a Hamiltonian vector fieldXH1 onS2
n/2 × S2

n/2 whose flow generates

an S1 symmetry. This is an approximate symmetry of the first normal form. AveragingHfnf w.r.t. to the flow of
XH1 gives the second normal formHsnf. Note thatH1 is an integral of the Hamiltonian system corresponding to
the second normal form. We then investigate the geometry of the level sets of the energy–momentum mapping

EM : S2
n/2 × S2

n/2 → R2 : p → (Hsnf(p),H1(p))

by reducing theS1 symmetry to obtain a one degree of freedom system onPn,c. Because theS1 action onMc =
H−1

fnf (c)∩ (S2
n/2 ×S2

n/2) defined by the flow ofXH1 has fixed points whenc = 0 andc = ±n, we must usesingular
reduction[2] to obtain the second reduced phase spacePn,c. We show that for an explicitly given open set of field
parameters the (0,0)-level set ofEM (i.e., the set of all points inS2

n/2 ×S2
n/2, whereH1 andHsnf both take the value

0), is a doubly pinched 2-torus inS2
n/2 ×S2

n/2. It follows that the energy–momentum mapEM has monodromy (see
[12]).

2. Review of first normal form

This section reviews the familiar grounds for obtaining the first normal form. Our treatment follows [24] and
explains the details of the field strength scaling. More explanation of the computation of the first normal form, its
finite symmetries and its expression in terms of the SO(4) symmetry generators can be found in [24,27].

2.1. Regularization and rescaling

In order to perform normalization one needs to regularize the Hamiltonian (1) so that its bounded orbits
are defined for all time. Intuitively speaking, regularization removes the 1/r singularity from the Kepler
Hamiltonian.
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First we fix a valueE < 0 of the energy. We then rescale length and momentum by(Q, P ) → (C−1Q,CP) so
that the effective chargeC in (1) becomes 1. After rescaling time byt → C2t , the Hamiltonian (1) becomes

0 = 1
2P

2 − 1

|Q| − E

C2
+ F

C3
Q2 + G

2C2
(Q2P3 −Q3P2)+ G2

8C4
(Q2

2 +Q2
3). (2a)

Next we define a new timescale by dt → (1/|Q|)dt . Eq. (2a) becomes

0 = 1
2|Q|

(
P 2 − 2E

C2

)
− 1 + F

C3
Q2|Q| + G

2C2
(Q2P3 −Q3P2)|Q| + G2

8C4
(Q2

2 +Q2
3)|Q|. (2b)

We now regularize (2b) using the method of Kustaanheimo and Stiefel (KS). The KS method lifts the phase space
T0R3 = (R3 − {0})× R3 (with canonical coordinates(Q, P )) to the larger phase spaceT0R4 = (R4 − {0})× R4

(with canonical coordinates(q, p)) using the mapping

KS : T0R4 → T0R3 : (q, p) →
(
MKS(q),

MKS(p)

r

)
= (Q,0, P ,0). (3)

Here

MKS =


q1 −q2 −q3 q4

q2 q1 −q4 −q3

q3 q4 q1 q2

q4 −q3 q2 −q1

 , r = |Q| = q2.

In defining the KS map (3) we require

ζ = q1p4 − q2p3 + q3p2 − q4p1 = 0. (4)

Using the KS map, Eq. (2b) becomes

1 = 1
2

(
1
4p

2 + −2E

C2
q2
)

+ 2F

C3
(q1q2 − q3q4)q

2 + G

2C2
(q2p3 − q3p2)q

2 + G2

8C4
(q2

1 + q2
4)(q

2
2 + q2

3)q
2.

(5)

After rescaling the variablesq andp by (q, p) → (q/
√
ω, p

√
ω), whereω = 2

√−2K/C, and rescaling time by
t → 1

4ωt , Eq. (5) becomes

4

ω
= H = 1

2(p
2 + q2)+ 1

3f (q1q2 − q3q4)
2q2 + 1

2g(q2p3 − q3p2)q
2 + 1

8g
2(q2

1 + q2
4)(q

2
2 + q2

3)q
2. (6)

Choosing the scaled field parameters as

f = 3F

(
2

Cω

)3

= εβ, g = G

(
2

Cω

)2

= εα,

whereα andβ are two dimensionless parameters satisfying

α ≥ 0, β ≥ 0, α2 + β2 = 1 (7)
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andε is a smallness parameter [24],4 the HamiltonianH (6) can be written as

H(q, p)= 1
2(p

2 + q2)+ ε(β(q1q2 − q3q4)
2 + α(q2p3 − q3p2))q

2 + 1
2ε

2(1
4α

2(q2
1 + q2

4)(q
2
2 + q2

3)q
2)

=H0 + εH1 + 1
2ε

2H2, (8)

which is a perturbation of the 1:1:1:1 harmonic oscillator. Note that the KS function (4) is an integral of the
Hamiltonian vector fieldXH .

2.2. Normalization and reduction

Having written the Hamiltonian (8) as a perturbation of the harmonic oscillatorH0, we can carry out its normal-
ization using standard Lie series methods. This normalization procedure gives a canonical coordinate change on
TR4 for which the transformed Hamiltonian Poisson commutes withH0 up through second order terms inε. The
truncated normalized Hamiltonian

Hfnf = H0 + εH1 + 1
2ε

2H2 (9)

also Poisson commutes with the KS integralζ (4) because the normalizing coordinate change commutes with the
S1 symmetry ofH (8) generated by the flow ofXζ . Thus,Hfnf is invariant under theT2 symmetry generated by
H0 andζ .

The algebra of polynomials onTR4 which are invariant under thisT2 action is generated by

K1 = 1
4[p2

2 + q2
2 + p2

3 + q2
2 − (p2

1 + q2
1)− (p2

4 + q2
4)], (10a)

K2 = 1
4(p3p4 − q1q2 − p1p2 + q3q4), (10b)

K3 = −1
2(q1q3 + q2q4 + p1p3 + p2p4), (10c)

L1 = 1
2(q2p3 − q3p2 + q1p4 − q4p1), (10d)

L2 = 1
2(q2p4 + q3p1 − q1p3 − q4p2), (10e)

L3 = 1
2(q1p2 + q3p4 − q2p1 − q4p3), (10f)

together withH0 and ζ . The vectorsK = (K1,K2,K3) andL = (L1, L2, L3) are nothing but the modified
eccentricity5 and angular momentum vectors for the Kepler Hamiltonian written in terms of the KS variables
(q, p). The aboveT2-invariants satisfy two relations

K ·K + L · L = 1
4H

2
0 , K · L = 0. (11)

Thus the space ofT2 orbits onH−1
0 (2n) ∩ ζ−1(0) is defined by

K2 + L2 = n2, K · L = 0. (12a)

Since (12a) is equivalent to

(K + L)2 = n2, (K − L)2 = n2, (12b)

4 In the notation of [24]α = Gs, β = Fs andε = τ/n = S(ω/2), whereS = C(2/Cω)2
√
G2 + (3F(2/Cω))2 is the scaled uniform

field intensity used as a smallness parameter. In [24] the symmetry groupZ2 × Z2 with operations(e, σ1, σ2, σ3) is calledG4 with operations
(I, T2, σ, Ts).

5 Often called after Laplace–Runge–Lenz, see [2], p. 400, note to p. 55.
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theT2-orbit space is the product of two 2-spheresS2
n/2 × S2

n/2. The Poisson structure onS2
n/2 × S2

n/2 is determined
by the so(4) relations

{Li, Lj } = εijkLk, {Ki,Kj } = εijkLk, {Li,Kj } = εijkKk. (13)

In [24] the first normalized HamiltonianHfnf in (9) is expressed in terms ofT2-invariant polynomials restricted to
S2
n/2 ×S2

n/2. Rescaling time byt → −tn and dropping the additive constant(3α2 −17β2/9) ε/4, we can writeHfnf

as

H0 = 2, (14a)

H1 = αL1 + βK2, (14b)

H2 = 1
4α

2[3L2
1 + 2L2

2 + 3K2
1 − 2K2

2 + 2(L2
3 −K2

3)] + 1
3αβ(7K2L1 − L2K1)+ 1

12β
2(17K2

2 − 3L2
2).

(14c)

3. Second normal form

In this section we show how to normalize the HamiltonianHfnf of the first normal form once again using theS1

symmetry generated byH1. We then reduce thisS1 symmetry to obtain a one degree of freedom HamiltonianHn,c
on a possibly singular second reduced phase spacePn,c. Whenc = 0 we analyse the geometry of this one degree
of freedom systemHn,0 on the singular spacePn,0. We find an open interval of values of the parameterα such that
the energy–momentum map(Hsnf,H1) has monodromy.

3.1. Calculation of the second normal form

In order to calculate the second normal form forHfnf in (14a)–(14c), we make its first order termH1 = αL1+βK2

the first basis element of the so(4) Poisson algebra (13). To do this we use the fact thatα2 + β2 = 1 and define a
Poisson automorphism(L,K) → (T , V ) with

(T , V ) =


 αL1 + βK2

αL2 − βK1

L3,

 ,
 βL2 + αK1

αK2 − βL1

K3


 . (15)

Of course, the Poisson brackets for the components ofT andV are the same as in (13) withL andK replaced
by T andV , respectively. We can also work directly with the Poisson algebra generated by the components of
x = 1

2(T + V ) andy = 1
2(T − V ), namely

x1 = 1
2(T1 + V1), x2 = 1

2(T2 + V2), x3 = 1
2(T3 + V3), (16a)

y1 = 1
2(T1 − V1), y2 = 1

2(T2 − V2), y3 = 1
2(T3 − V3). (16b)

In terms of these variables, the first reduced phase spaceS2
n/2 × S2

n/2 is defined by the Casimirs

x2
1 + x2

2 + x2
3 = 1

4n
2, y2

1 + y2
2 + y2

3 = 1
4n

2, (17)

and the Poisson bracket satisfies the so(3)× so(3) relations

{xi, xj } = εijkxk, {yi, yj } = εijkyk, {xi, yj } = 0. (18)
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After dropping the constantH0 = 2, rescaling the time byt → εt , and then changing to variables(x, y), the first
normalized Hamiltonian (9) up to first order becomes

Hfnf = H1 + 1
2εH2 = T1 + 1

2εH2 = (x1 + y1)+ 1
2εH2, (19a)

where

H2 = 1
3(2α

4 − α2 + 7
2)(x

2
1 + y2

1)+ 2
3α

2(1 − α2)(x2
2 + y2

2)+ 1
3αβ(1 − 4α2)(x1x2 − y1y2)

+2
3αβ(x2y1 − x1y2)+ 2α2(x2y2 + x3y3)+ 10

3 (1 − α2)x1y1. (19b)

The vector field

XH1 = −T3
∂

∂T2
+ T2

∂

∂T3
− V3

∂

∂V2
+ V2

∂

∂V3
(20a)

= −x3
∂

∂x2
+ x2

∂

∂x3
− y3

∂

∂y2
+ y2

∂

∂y3
(20b)

has flow given by

ϕt (x, y) = (Rtx, Rty), Rt =
 1 0 0

0 cost − sint
0 sint cost

 . (21)

In other words,ϕt defines anS1 action onR3 ×R3 which satisfiesϕ2π = id and leaves the first reduced phase space
S2
n/2 × S2

n/2 invariant. Thus, we may normalizeHfnf a second time. This can be done by a simple averaging ofH2

along the orbits ofXH1 namely

H̄2(x, y) = 1

2π

∫ 2π

0
H2(ϕt (x, y))dt. (22)

Thus to first order the second normalized Hamiltonian is

Hsnf = H1 + 1
2εH̄2, (23a)

with

H̄2(x, y) = 1
3(2α

4 − α2 + 7
2)(x

2
1 + y2

1)+ 1
3α

2β2(x2
2 + x2

3 + y2
2 + y2

3)+ 10
3 β

2x1y1 + 2α2(x2y2 + x3y3).

(23b)

This can be further simplified using (7) and (17) to

H̄2(x, y) = (α4 − 2
3α

2 + 7
6)(x

2
1 + y2

1)+ 1
6n

2α2β2 + 10
3 β

2x1y1 + 2α2(x2y2 + x3y3). (23c)

The normal formHsnf retains only those termsπ(x, y) of H2 (a homogeneous polynomial in(x, y) of degree 2)
which Poisson commute withH1, i.e., for whichXH1(π(x, y)) = 0. SinceH̄2 is constant on the integral curves of
XH1, it follows thatH1 is a second integral ofXHsnf . Thus(Hsnf,H1) is a Liouville integrable system on the first
reduced phase spaceS2

n/2 ×S2
n/2 with coordinates(x, y) and Poisson bracket (18). The energy–momentum map for

this integrable system is

EM : S2
n/2 × S2

n/2 → R2 : p → (Hsnf(p),H1(p)). (24)
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3.2. Reduction to one degree of freedom

Here, we analyse the integrable system(Hsnf,H1) by reducing theS1 symmetry generated byH1 using the
method ofsingular reduction[2,25]. We thereby obtain a one degree of freedom system.

3.2.1. Second reduced phase space
First we use invariant theory to construct the second reduced space. The algebra of polynomials onR3 × R3

which are invariant under theS1 action defined byϕt (21) is generated by

π1 = x1 − y1 = V1, (25a)

π2 = 4(x2y2 + x3y3) = T 2
2 + T 2

3 − V 2
2 − V 2

3 , (25b)

π3 = 4(x3y2 − x2y3) = 2(T2V3 − T3V2), (25c)

π4 = x1 + y1 = T1, (25d)

π5 = 4(x2
2 + x2

3), (25e)

π6 = 4(y2
2 + y2

3), (25f)

subject to the relation

π2
2 + π2

3 = π5π6, π5, π6 ≥ 0. (26)

Eq. (26) defines the space ofϕt orbits onR3 ×R3. To find an explicit defining relation for the second reduced phase
space we note that thec-level set ofH1, which is given by

H1 = T1 = x1 + y1 = c, |c| ≤ n, (27)

and (17), is aϕt -invariant submanifoldMc of S2
n/2 × S2

n/2 ⊂ R3 × R3. The second reduced phase spacePn,c is the
space ofϕt orbits onMc and is defined in terms of invariant polynomials (25a)–(25f) by

π4 = c, (28a)

π5 = n2 − (π1 + π4)
2, (28b)

π6 = n2 − (π4 − π1)
2, (28c)

π2
2 + π2

3 = π5π6, π5, π6 ≥ 0. (28d)

(Eqs. (28a)–(28c) come from expressing the defining equations (17) and (27) ofMc in terms of invariant polynomials
(25a)–(25f). These equations are complemented by the relation (26)). Using the relations in (28a)–(28d) to eliminate
the variablesπ4, π5, andπ6, we see thatPn,c is the semialgebraic variety defined inR3 with coordinates(π1, π2, π3)

by

π2
2 + π2

3 = [(n− c)2 − π2
1 ][(n+ c)2 − π2

1 ]. (29a)

The values ofπ1, π2, andπ3 in (29a) are subject to the restrictions

|π1| ≤ n− |c|, |π2| ≤ n2 − c2, |π3| ≤ n2 − c2. (29b)

(The first restriction follows from the fact that for any|c| ≤ n and |π1| ≤ n, use (17)) the two factors on the
right-hand side of (29a) cannot be both negative and hence they should be both positive.) From (29a) and (29b) we
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Fig. 3. The second reduced phase spacePn,0.

can see that when 0< |c| < n, the second reduced phase space is a smooth 2-sphere; when|c| = n it is a point;
whenc = 0 it is a topological 2-sphere with two conical singular points shown in Fig. 3. The reason whyPn,0 has
two singular points is that theS1 actionϕt onM0 has two fixed points(x, y) = 1

2n(±1,0,0,∓1,0,0). (The two
other fixed points of theϕt action onS2

n/2 × S2
n/2 are(x, y) = ±1

2n(1,0,0,1,0,0) corresponding toPn,±n, see
[24,27] for more details.)

3.2.2. Reduction of finite symmetries
As discussed in Ref. [24], the original HamiltonianH (1) has two distinctZ2 symmetries: one given by the

composition of momentum reversal(Q, P ) → (Q,−P) and rotation throughπ around axisQ2 of the electric
field F

σ1 : (Q, P ) → (−Q1,Q2,−Q3, P1,−P2, P3),

and the other given by a reflection in the plane orthogonal to axisQ1 of the magnetic fieldG

σ2 : (Q, P ) → (−Q1,Q2,Q3,−P1, P2, P3).

The twoZ2 actions commute and the total finite symmetry group of (1) is the groupZ2 × Z2 of order 4. Its third
nontrivial operation is

σ3 : (Q, P ) → (Q1,Q2,−Q3,−P1,−P2, P3),

which is the composition of the momentum reversal and reflection in the plane spanned by the electric and magnetic
field vectors, see Fig. 4. Tracing these symmetries through the two reduction steps, we find that their action on the
invariantsπk in (25a)–(25f) (and thus on the second reduced phase spacePn,c) is given by

σ1 : (π1, π2, π3) → (−π1, π2, π3), (30a)

σ2 : (π1, π2, π3) → (−π1, π2,−π3), (30b)

σ3 : (π1, π2, π3) → (π1, π2,−π3). (30c)

The orbit map of theZ2 subgroup generated by (30a) is given by(π1, π2, π3) → (w, π2, π3), where

w = (n− |c|)2 − π2
1 . (31)
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Fig. 4. Action of the symmetry operations of theZ2 × Z2 finite symmetry group of the hydrogen atom in orthogonal fields on the vectors of
electric and magnetic fieldsF andG. (Position ofG obtained without momentum reversal which sendsG → −G is shown by the dashed line.)

Thus the image ofPn,c under (31) is the semialgebraic varietyVn,c defined inR3 (with coordinates(w, π2, π3)) by

π2
2 + π2

3 = w(w + 2n|c|), 0 ≤ w ≤ (n− |c|)2. (32)

When 0< |c| < n, Vn,c is a smooth manifold with boundary atw = (n− |c|)2 which is diffeomorphic to a closed
2-disc; when|c| = n it is a point; whenc = 0, the varietyVn,0 is a topological closed 2-disc with a conical singular
point, see Fig. 5. The remainingZ2 symmetries (30b) and (30c) induce aZ2 action onVn,c generated by

(w, π2, π3) → (w, π2,−π3).

Theorbit spaceV 0
n,c of thisZ2 action onVn,c is the projection ofVn,c on the{π3 = 0} plane (see Fig. 5, right), i.e.,

V 0
n,c is the image of the map

Vn,c → {π3 = 0} : (w, π2, π3) → (w, π2,0).

We call the spaceV 0
n,c the full symmetry reduced spaceof the second normal form. For comparison with earlier

work [25,26], we will also useP 0
n,c which is the projection of the second reduced spacePn,c (Fig. 3) on the{π3 = 0}

plane.

Fig. 5. The varietyVn,0 (left) obtained as the orbit space of theZ2 action (30a) on the second reduced phase spacePn,0. Fully symmetry reduced
phase spaceV 0

n,0 (right) obtained as the orbit space of theZ2 × Z2 action (30a)–(30c) on the second reduced phase spacePn,0 in Fig. 3.V 0
n,0 is

a projection of the varietyVn,0 (left) on theπ3 = 0 plane.
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Fig. 6. Constant level sets of̃Hn,0 onV 0
n,0 (left) and onP 0

n,0 (right) in the case when|b/a| > 1 (without monodromy).

3.2.3. Reduced second normal form
The second normal form and the manifoldMc are invariant under the actionϕt (21). The restriction ofHsnf

(23a)–(23c) descends to a functionHn,c onPn,c, called the reduced second normal form. Furthermore, the function
Hn,c is invariant w.r.t. theZ2×Z2 symmetry (30a)–(30c) of the problem and can therefore be regarded as a function
H̃n,c on the full symmetry reduced phase spaceV 0

n,c. In other words,Hn,c depends only onZ2 × Z2 invariant

polynomialsπ2
1 (or w) andπ2 (see Appendix A.3). In order to define the functionH̃n,c onV 0

n,c we expressHsnf

(23a)–(23c) in terms of the invariantsπ2, π1, andπ4, fix the value ofπ4 to bec, and then change to the symmetry
coordinatew in (31). In this way we find

H̃n,c = aπ2 + bw, a = α2, b = 1
2 − α2 − α4. (33)

Here we have used the relations

x2
1 + y2

1 = 1
2(π

2
1 + π2

4), x1y1 = 1
4(π

2
4 − π2

1),

have rescaled timet → 1
2t , and have dropped the additive constant

1
6c

2(6α4 − 4α2 + 7)+ 1
12n

2(4α4 + 8α2 − 3)+ 1
4cnb.

We note that (to our order of the second normal form) this constant term contains all the dependence on the values
of integralsn andc of the first and second normal forms. Even at the third order, the second normal formH̃n,c
remainslinear in π2 andw (see Appendix A.3).

3.3. Geometric analysis

We now analyse the geometry of the level sets of the second reduced normal formHn,c on the second reduced
phase spacePn,c whenc = 0, i.e., whenPn,c is singular. It suffices to understand theh-level sets ofH̃n,0 on the full
symmetry reduced spaceV 0

n,0. There are two qualitatively different possibilities which are illustrated in Figs. 6 and
7. In these figures we also show the corresponding sets on the{π3 = 0}-projection ofPn,0. This latter representation
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Fig. 7. Constant level sets of̃Hn,0 onV 0
n,0 (left) and onP 0

n,0 (right) in the case when|b/a| < 1 (with monodromy). Corresponding levels on
Vn,0 andPn,0 are shown in Figs. 3 and 5.

was used in Refs. [25,26]. Furthermore, when|b/a| < 1, the same level sets can be seen in Figs. 3 and 5 onPn,0

andVn,0, respectively.
We now determine at what values of the parameterα ∈ [0,1] the slope|b/a| is less than 1. In other words, we

want to have a system of level sets of the kind shown in Fig. 7 where the 0-level set ofH̃n,0 is a closed interval
one of whose end points is the singular point(w, π2) = (0,0). Sincea = α2 > 0, the condition that needs to be
satisfied is−a < b < a. From (33), we see that the parameterα > 0 must satisfy

−α2 < −α4 − α2 + 1
2 < α2.

The above inequalities become equalities whenα2 =
√

2
2 andα2 =

√
6

2 − 1. Hence|b/a| < 1 if and only if

α2 ∈ I =
(√

6
2 − 1,

√
2

2

)
. (34)

3.4. Reconstruction and monodromy

We now show how to reconstruct the geometry of the level sets of the second normal form onM0 from the
geometry of the level sets of the second reduced Hamiltonian on the second reduced phase spacePn,0. We will use
the reduction map

5 : M0 ⊆ S2
n/2 × S2

n/2 → Pn,0 ⊆ R3 : (x, y) → (π1(x, y), π2(x, y), π3(x, y)), (35)

whose fiber5−1(p) over a pointp in Pn,0 is a uniqueϕt orbit onM0. If p is a nonsingular point ofPn,0, then
5−1(p) is a circle (i.e., a genericϕt orbit); whereas ifp is a singular point ofPn,0 then5−1(p) is a point, which
is fixed by the actionϕt .

We carry out our reconstruction only when|b/a| < 1. The treatment of the other case when|b/a| > 1 is analogous
and is omitted. To follow the discussion please refer to Fig. 3 as well as Figs. 5 and 7which illustrate the lift from
V 0
n,0 toPn,0. We begin by considering the case when the level set ofHn,0 is a pointp. If p is anonsingularpoint of

Pn,0 (with coordinatesπ1 = 0 and|π2| = n), then after reconstruction we obtain aperiodic orbitS1 = 5−1(p) of
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Fig. 8. Possible generic deformations of the constant level sets ofHsnf (33) whena/b ≈ 1. All cases have an extraZ2 equivalent pair of relative
equilibria. In the leftmost situation (a) the double pinched torus is decomposed into aZ2 equivalent pair of single pinched tori.

XH1 onM0 which is also a periodic orbit ofXHsnf sinceHsnf andH1 Poisson commute. These periodic orbits are
called relative equilibria ofXHsnf . If p is asingularpoint ofPn,0, then after reconstruction we obtain an equilibrium
point ofXH1 onM0 which is also an equilibrium point ofXHsnf .

We now look at the 0-level set ofHn,0. This level set contains the two singular pointsp0 andp1 of Pn,0. If we
remove these points, we obtain two curvesC0 andC1 which consist of nonsingular points ofPn,0 and which are
each topologically an open interval. Over each point onCi the fiber of the reduction map5 (35) is a circle. Since
eachCi is contractible inPn,0 − {p0, p1} to a point, it follows that5−1(Ci ) (the set of all points inM0 which
map by5 to points ofCi) is diffeomorphic to a cylinderCi × S1. Thus,5−1(Ci ∪ {p0, p1}) is a cylinder with
each of its ends pinched to a point. The reconstruction5−1(H−1

n,0(0)) in M0 of the 0-level ofHn,0 onPn,0 is the
union of two pinched cylinders with their end points identified two at a time to two distinct points. In other words,
after reconstruction, the 0-level set of the second reduced Hamiltonian on the second reduced space is a doubly
pinched 2-torus inM0 (see Fig. 1, right). This doubly pinched 2-torus is the fiber over the (0,0) point in the range of
the energy–momentum mapEM of the integrable system(Hsnf,H1). Thus the energy–momentum mapEM has
monodromy [12] when the values ofα2 lie in the intervalI (34).

3.5. Monodromy of the generic second normal form

The careful reader should have noticed that the reduced second normal formH̃(1)snf (33) truncated at order one
(which corresponds to second order of the first normal formHfnf ) is not generic. Indeed, when|a/b| = 1 the level
sets ofH̃(1)snf are parallel to one of the edges ofV 0

n,0 (and thus the corresponding level set ofH(1)snf coincides with part

of P 0
n,0), see Figs. 6 and 7. In a generic situation the level sets ofH̃snf are slightly curved.

The two possible level sets of the genericH̃snf are illustrated in Fig. 8. The level sets near the edge|π2| = w of
V 0
n,0 can either curve “inward” as in Fig. 8(a) and (b) or “outward” as in Fig. 8(c) or (d). To find which situation

occurs in our problem, thefourthorder of the first normal formHfnf (which corresponds to the third orderH(3)snf of

the second normal form) should be computed (see Appendix A.3). The termsa′π2
1π2, b

′π4
1 andc′π2

2 inH(3)snf ensure

that the level sets of̃H(3)snf are curved. According to our fourth-order analysis [41] both the “inward” and “outward”
cases occur.

When|a/b| ≈ 1 andc = 0 the genericH̃(3)snf has an extra pair ofZ2-equivalent relative equilibria. These correspond

to a point of tangency of a level set ofH̃(3)snf with one of the edges ofV 0
n,0. Asa/b changes the point of tangency moves

quickly to one of the endpoints of the edge and disappears. There are two bifurcations involved in this process.
At the first, theZ2-equivalent pair of relative equilibria appears from the singular pointsπ2 = 0, V1 = ±n (i.e.,
π2 = w = 0) of the second reduced phase spacePn,0. At the second, this pair collapses to one of theZ2-symmetric
relative equilibriaw = |π2| = n. The first bifurcation is aS1 × Z2-symmetric Hamiltonian Hopf bifurcation [41],
whereas the second is a pitchfork bifurcation.
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When |a/b| ≈ 1 andc = 0 (near the limits of the monodromy intervalI (34)) the topology of the level sets
of the genericHsnf (which lie near|π2| = w) can be quite complicated. In particular, Fig. 8(a) shows how the
zero-level set which corresponds to the doubly pinched 2-torus inM0, see Fig. 7, splits into two singly pinched
2-tori. Even though the topology of the zero-level set ofH̃(3)snf is different from the topology of the zero-level set of

H̃(1)snf, the monodromy doesnotchange becausẽH(1)snf andH̃(3)snf onM0 are smoothly homotopic and monodromy is a

homotopy invariant. Consequently, our geometric analysis of the nongeneric second normal formH̃(1)snf is adequate
for determining the monodromy.

4. Quantum monodromy

Traditionally, manifestations of monodromy in quantum systems have been analysed using the quantum analogue
of the energy–momentum map [13–16]. The EBK quantization conditions for an integrable system select regular
sequences of invariant tori which correspond to quantum energy levels. The global structure of energy levels of the
quantum analogue of an integrable system with monodromy is quite particular and provides a very clear manifestation
of monodromy [10,11,13,14]. Locally, the energy levels (and the corresponding tori) form a regular lattice of points
in the range of energy–momentum mapEM and can be labelled by the values of quantized actions. However, if
monodromy is present, the structure of this lattice in the vicinity of the image of the pinched torus makes any global
labelling impossible.

4.1. Quantum analogue of the second normal form

The technique to construct the quantum analogue of the normalized Kepler Hamiltonian (of the first reduced
HamiltonianHfnf on S2

n/2 × S2
n/2) is well known, see [42–44].6 To construct the quantum analogueĤsnf of the

second reduced HamiltonianHsnf(π
2
1 , π2) (33) we represent the latter in terms of components of the 3-vectorsx and

y in (16a) and (16b) and then replacex andy with their quantum analogues. The Poisson algebra (18) is the algebra
su(2)× su(2) of two angular momenta. It corresponds to the algebra of quantum angular momentum operators

[x̂a, x̂b] = iεabcx̂c, [ŷa, ŷb] = iεabcŷc, [x̂a, ŷb] = 0, (36)

where{abc} = {123} and [A,B] = AB− BA. The Casimirs of this algebra arex2 andy2 in (17). They are integrals
of the second normal form. Hence in quantum mechanics [Ĥsnf, x̂

2] = [Ĥsnf, ŷ
2] = 0. The standard angular

momentum quantization gives

x̂2 = ŷ2 = j (j + 1), j = 0, 1
2,1,

3
2, . . . . (37a)

Herej labels the natural su(2) representation of dimension 2j + 1. The(2j + 1)2 quantum states with quantum
numberj form ann shell of the perturbed hydrogen atom system with the number of states, when expressed in
terms of the principal quantum number

n = 2〈x̂2 + ŷ2〉 = 〈T̂2 + V̂2〉 = 1,2,3, . . . , (37b)

beingn2. Consequently,

j = 1
2(n− 1). (38a)

It follows from (17) that

x̂2 = ŷ2 = j (j + 1) = 1
4(n

2 − 1) = 1
4〈N̂2〉 (38b)

6 In [42] authors usedb ≈ α−2 − 2α2 − 2 as a field parameter.
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and that the classical value of the Kepler integralN is

ncl =
√

〈N̂2〉 =
√
n2 − 1. (38c)

At the same time the quantum numberm of the integral of motionT1 = x1 + y1 (the projection of the angular
momentumT on the axis of the dynamicalS1 symmetry) takes all integer values in the interval

m = 〈T̂1〉 = mx +my = −2j, . . . ,2j = −(n− 1), . . . , n− 1. (39)

(Heremx andmy correspond to the projection operatorsx̂1 andŷ1, respectively.) The classical valuec of T1 equals
m. To find the quantized energies we solve a simple matrix problem for each value ofm at a fixed value of quantum
numbern. In the standard spherical harmonic basisψj,mx,my = Yj,mxYj,my with mx + my = m, we obtain a
Hermitian matrix of dimension 2j + 1 − m = n − m which can be further reduced if theZ2 × Z2 symmetry is
taken into account.

The quantum analogue of the Hamiltonian

Hsnf = aπ2 − bπ2
1 (40a)

in (33) is the operator

Ĥsnf = 2a(x̂+ŷ− + x̂−ŷ+)− b(x̂1 − ŷ1)
2, (40b)

wherex̂± = x̂2 ± ix̂3 andŷ± = ŷ2 ± iŷ3 are creation–annihilation operators. Using standard formulae [45,46], we
find

Ĥsnfψj,mx,my = 2a(t+mx t
−
my
ψj,mx+1,my−1 + t−mx t

+
my
ψj,mx−1,my+1)− b(mx −my)

2ψj,mx,my , (41)

where coefficients (t±k = ((j ∓ k)(j ± k+ 1))1/2. It can be seen that the valuemx +my = m = c is preserved, the

matrix of Ĥsnf is tridiagonal,7 and our calculation is essentially a reproduction of [42].

4.2. Analysis of quantum energy–momentum map

Results of our computation forn = 11 and the corresponding classical value ofncl = √
120 are shown in Fig. 9.

Black dots in this figure show the eigenvalues of the matrix ofĤsnf in the basis withn = 11 andm = −10, . . . ,10,
bold lines represent stationary points ofHn,0 onPn,0 with ncl = √

120. These lines limit the range of the classical
energy–momentum mapEM. The case with monodromy (a/b = 0.4 andα2 ∼ 0.295) is shown on the left of
Fig. 9. We compare and analyse quantum energy–momentum map forn = 11 and classicalEM for ncl = √

120.
It can be seen that quantum energies form a 2-lattice in the range ofEM. In the presence of monodromy this

lattice has apoint defectlocated at the value ofEM corresponding to the pinched torus. The type of the defect
is related to the number and type of the pinch points. To visualize this defect we can define an elementary cell of
the lattice and transport it along a path which lies entirely in the domain of regular values ofEM and goes around

7 Thus in the casen = 4 thec = mx + my = 0 subspace is spanned by four functionsψj,m,−m with j = 3
2 andm = − 3

2 ,− 1
2 ,

1
2 ,

3
2 . The

matrix representation of̂Hsnf on this subspace is
−9b 6a

6a −b 8a

8a −b 6a

6a −9b

 .
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Fig. 9. Quantum and classical energy–momentum map for quantum numbern = 11 and classical valuencl = √
120. In the case with monodromy

(left) the position of the pinched torus is marked by a white circle and the deformation of the local lattice is shown by a sequence of shaded
quadrilaterals.

the defect (Fig. 9, left). We can easily follow the evolution of this cell because each small step to a neighbouring
cell is unambiguous. However, after making a tour our final cell doesnotmatch the original cell! The accumulated
deformation is described by the matrix(

1 2

0 1

)
,

where 2 corresponds to the number of pinch points of the singular fiber of the energy–momentum map [40]. Thus
the lattice in Fig. 9 (left) cannot be labelled globally by two quantum numbers.

For comparison, we show on the right of Fig. 9 the results of the same calculation forα2 ∼ 0.158. In this case the
value ofα2 lies outside the monodromy intervalI and is close to the Stark limit whereα = 0. The corresponding
energy level spectrum is quite similar to that in the quadratic Zeeman effect [47–49]. Two distinct regions in the range
of EM are clearly separated by the energy of an unstableZ2 symmetric stationary point ofHn,c. In the lower region
the quantum lattice corresponds to that of a rotator with angular momentum quantum numberJ = n, n−1, . . . . The
upper region corresponds to the double well 2-oscillator. Over each of the regions (except, perhaps, for a few levels
near their common boundary) there is a straightforward unambiguous labelling with two quantum numbers. From
(33) we can see thatb/a ≥ −3

2, and that to the order used in our second reduced HamiltonianHn,c the structure at
b/a < −1 is qualitatively the same as in Fig. 9, right, with the energy axis flipped.

The whole parametric family ofEM can be easily imagined if we note that in the Zeeman limit atα = 0 the
HamiltonianHn,0 has an absolute minimum at the singular pointsp1 andp2 ofPn,0. As the value ofα2 increases, the
valueHn,0(p1) = Hn,0(p2) also increases. Thus the double-well region shrinks. Whenα2 = 1

2

√
6 − 1,Hn,0(p1)

enters the (upper) rotator region. Here the pointsp1 andp2 become hyperbolic relative equilibria and their stable
and unstable manifolds connect. After reconstruction they form a double pinched torus inM0. In this region the
angular momentum quantization rule breaks down (Fig. 9, left). AsHn,0(p1) continues to increase, it becomes an
absolute maximum whenα2 >

√
2/2 (Fig. 9, right).

5. Comments on previous work on the crossed fields problem

Our methods, especially the analysis based on the second normal form can be used for a complete qualitative
study of the crossed fields system in all possible dynamical regimes. In particular, all invariant subsets (regular
tori, periodic orbits, etc.) and their bifurcations can be fully characterized and systematized. Many other perturbed
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Kepler systems can be studied in a similar way. As our purpose was to focus on monodromy, we have addressed
such a complete analysis but very briefly. Below we give more details on the applications of our methods and
interpret previously obtained results. This section is mostly destinated for atomic physicists who are aware of the
vast literature on the atoms-in-fields problem and want to place properly our present work. At the same time, though
far from being comprehensive, it can help mathematicians get a feeling of what has gone on in this particular field
of atomic physics during the past 20 years.

5.1. Parameterization schemes

When comparing classical and quantum results, we should be well aware of the difficulty presented by the two
different parameterization schemes (cf. Sections IIE and IVB1 in [24]). In brief, we tend to use energy-scaled field
strengths in classical mechanics andn scaled field strengths in quantum mechanics. In other words, in the classical
problem we work on the same energy level set of (1), whereas in the quantum problem we compute energies of the
states within the samen-shell. Formally, the energy of our system can be found as follows. Remember that for the
initial KS Hamiltonian in (6) the energy is 4/ω. Similar relation between the value of the Hamiltonian function and
ω holds for the first and second normal form and should be used to find the value ofω (and energy). If we take all
our rescalings properly into account and include all constant terms, this relation for the second normal formH̃snf

in (33) is

Hsnf = c

n
− 1

4εn

[
a
π2

n2
− b

π2
1

n2
+ (17

6 − 7
3a + a2)

c2

n2
+ 17

18 − 19
9 a − 1

3a
2

]
+ (εn)2

c

n

F(π2, π
2
1 , c

2; a)
n2

+ · · ·

= c

n
− 1

4(εn)
h

n2
+ (εn)2

c

n

F

n2
+ · · · = − 2

εn
+ 2S

(εn)2
, (42)

whereF comes from the third order term obtained in Ref. [27],h is the value ofH̃snf in (33) plus a constant, and
ε = 1

2Sω [24]. (Note thatπ1, π4 = c, andπ2 are scaled according to the degree inT andV , and sinceT 2+V 2 = n2,
all dependence on the Keplerian actionn is now absorbed in the formal series parameter(εn).) Eq. (42) leads to a
formal power series inεn

S = (εn)+ 1
2(εn)

2 c

n
− 1

8(εn)
3 h

n2
+ · · · . (43a)

Inverting (43a) gives

ε = S

n
− 1

2c
S2

n2
+ (1

2c
2 + 1

8h)
S3

n3
− c(5

8c
2 + 5

16h+ F)S
4

n4
+ · · · , (43b)

and consequently,

2
√−2E

C
= ω = 2

n

[
1 − 1

2c
S

n
+ (1

2c
2 + 1

8h)
S2

n2
+ · · ·

]
(43c)

(recall the discussion in Section 2.1). It follows that the energy is

E = − C2

2n2

[
1 − c

S

n
+ 1

4(5c
2 + h)

S2

n2
− 1

4c(7c
2 + 3h+ 8F)

S3

n3
+ · · ·

]
. (43d)

In (43d) the unperturbed hydrogen atom energy is factored out. The smallness parameterS [24] is a uniform field
strength parameter. Itsn-shell definition can be obtained from the energy-scaled formulae in Section 3.1, if the KS
frequencyω is replaced by 2/n so that
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S → n

[(
Gn2

C2

)2

+
(

3Fn3

C6

)2]1/2

. (44)

The two definitions are equivalent in the unperturbed Kepler problem. In our case a simple replacement (44) gives
the principal order terms and is qualitatively correct. Accurate calculation requires the reparameterization of the
first normal formHfnf using the value ofn instead ofω in the definition of scaled field strengths.

5.2. First normalization and relative equilibria

In the early analysis of the hydrogen atom in magnetic field (quadratic Zeeman effect) Keplerian symmetry was
averaged along the correspondingS1 orbits [47,48,50].8 Later Levi–Civita regularization was implemented, the
resulting two-dimensional Hamiltonian was normalized to high orders, and quantized [43,44]. Full regularization of
the three dimensional system using Kustaanheimo–Stiefel method was introduced in Refs. [17–22]. Subsequently,
any hydrogen atom-in-fields system could be transformed in a regular perturbation of a 1:1:1:1 oscillator and
normalized straightforwardly using standard Lie series technique [51–53] to any required order. (As an alternative,
Moser’s regularization in [25,26] and Delaunay normalization in [54], both used to the first order, can be mentioned.)

The normal formHfnf of the crossed fields problem was reported in [38] and later in [30–32]. However, in
subsequent work [35–37] the authors turned to the analysis of the second reduced problem. As in [33,34,38] the
reorientation(L,K) → (T , V ) and the use ofT1 as the “third” approximate integral was the starting point of this
analysis (see Section 5.5). In that way the problem was made similar to the familiar cases with spatialS1 symmetry
(Zeeman effect and parallel fields, see Section 5.3) and was analysed for each fixed valuec of T1 separately. The
authors of [30–32] considered the case|c| 6= n which they fully analysed only forc 6= 0. (They did not consider
the geometry of their system, and in particular the relative equilibria and the associated singularity ofPn,c=0.) On
the other hand, relative equilibria withc = ±n(Pn,c=±n is a point) and withc = 0 (singular point ofPn,c=0) were
studied in Ref. [33,34].9

A comprehensive study of these relative equilibria was presented in [24] where the position of the equilibria
on S2 × S2, action and period of the corresponding periodic orbits, as well as reconstruction of these orbits in
the physical space of the Kepler problem were obtainedentirelyon the basis of the first normalized system. The
techniques used in [24], namely invariant theory, full study of theS2×S2 geometry, analysis of the symmetry group
action, and Morse theory, make this work a direct predecessor of and a complement to our present study. Since [24]
dealt exclusively with four basic relative equilibria, no second normalization was required.

At the same time it should be remarked thatall results of [24] can be obtained straightforwardly from the second
normal formHsnf. Thus to find the action integral along the periodic orbit with|π1| = n in the KS space (Ts orbit
in Table 2 of [24]), we substitute the coordinates(π1, π2) = (±n,0) of the singular point onPn,c=0 in (42). We
obtain the formal series inεn

S = εn+ 1
36(εn)

3(1 − a)(3a − 2)+ O((εn)5), (45a)

whose inverse is

εn = S − 1
36S

3(1 − a)(3a − 2)+ O(S5). (45b)

8 In the notation of these authors ([50], Table I), angleφ3 is the coordinate along theS1 orbit of the Keplerian symmetry,I3 ∝ n is the
corresponding action; they useI2

2 = L2 which corresponds to12(π
2
2 − π2

1 + n2 + c2).
9 The “elementary Kepler ellipses” or periodic orbits studied by these authors are four relative equilibria of the first normal form. The periodic

orbit S⊥ (they do not distinguish two symmetry equivalentS⊥ orbits) has stabilizerσ3 in (30a)–(30c) and corresponds to the two singular points
of Pn,c=0 (with π2 = π3 = 0 andπ1 = ±n). The periodic orbitsS− (“downhill”) and S+ (“uphill”) are Z2 × Z2-symmetric relative equilibria,
they correspond toPn,c=±n (pointsπ1 = π2 = π3 = 0 andπ4 = ±n). See [24], Footnote 4, and Section 5.2.



186 R.H. Cushman, D.A. Sadovskiı́ / Physica D 142 (2000) 166–196

Using the relationε = 1
2Sω [24] we find the action along the orbit

1

2π

∮
p dq = n = 2

ω
[1 − 1

36S
2β2(3α2 − 2)+ O(S4)]. (45c)

To reconstruct the orbit in the KS space we should first find the position of the equilibrium point onS2 × S2 using
the inverse second normal form transformation and then proceed as in Ref. [24].

Thus we conclude that the first normalized system is an intermediate stage in the analysis, which can be omitted if
the geometry of the two step reduction is given. Then the complete qualitative understanding of the dynamics of our
system can be obtained when all individual second normalized systems (with phase spacesPn,c and Hamiltonians
Hn,c) are studied as one family.

5.3. Systems with additionalSSS1-symmetry

The methods of geometrical and dynamical analysis presented in our paper applyequallyto any perturbed Kepler
problem with an additionalS1 symmetry as long as this additional symmetry commutes with theS1 symmetry of
the first reduction and induces the same diagonal action on the first reduced phase spaceS2 × S2. The additional
S1 symmetry itself can be exact or, as in our case, an approximate dynamical symmetry “imposed” by the second
normalization. The most obvious and widely studied case of such symmetry (complete bibliography on the subject
is very large, see [17–23,28,29,43,44,47–49] and other work cited there) is an axially symmetric system such as
hydrogen atom perturbed by only one field (magnetic or electric) or by two parallel fields. In this case, theS1 action
on the 3-vectorsK andL in the initial physical space of the Kepler problem is a simultaneous rotation about the
symmetry axis, or the field(s) axis (chosen as axisQ1 here orz elsewhere)

(K,L) → (RφK,RφL), Rφ =
 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

 .
Such action is equivalent (conjugate) to (21). Consequently, there is a simple correspondence between our second
normalized system with integralsn andT1 = π4 = c and a first normalized axially symmetric system with integrals
n andL1 = m, the projection of the angular momentum. In particular, to obtain invariant polynomials for the latter
system (see Appendix A.1) we should take (25a)–(25f) and simply substitute(L,K) for (T , V ).

Furthermore, one should note that second and first normalizations use thesamesmallness parameterε and in this
regard second normalized system and itsS1 symmetry come at no additional cost — they remain valid as long as the
first normal form does. Since first normalization is common to all perturbed Kepler systems we consider, it appears
that to the order of this approximation, theS1 symmetry of our system and the strictS1 symmetry mentioned above
are equivalent.

5.3.1. Reduction of finite symmetries
The finite symmetries which remain after the additionalS1 symmetry is removed are system specific [56].10

The parallel fields system [23] has only one reversing symmetryZ2 which acts on invariants of the second reduced
system in the same way asσ3 acts on(π1, π2, π3) in (30c). The residual finite symmetry in the case of the Zeeman
effect (only magnetic field) and Stark effect (only electric field) isZ2 × Z2 with action (30a)–(30c). Within our
framework these are two particular cases (a = α = 1 andb = −3

2) and (α = 0), respectively. It should be noted that

10 The initial unpublished version of this work is dated 1995. As in [23] and Appendix A.1 the authors usen-scaled invariants. Due to slightly
different choice of invariants (ξ vsπ2) their orbifold has the shape of a smoothed tetrahedron, see Fig. 4 in [23], where such choice is dictated
by the concrete Hamiltonian linear inξ andπ1.
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the symmetry of the corresponding original system is very different. Thus the pure Stark problem is symmetric with
regard to momentum reversal(q, p) → (q,−p)whoseimagein the ambient 3-space with coordinates(π1, π2, π3)

is (30a) (in this limitπ4 = K2 andπ1 = L2).

5.3.2. Orbifold method
A comprehensive analysis of symmetries of different possible perturbations of the Kepler problem (e.g. of the

hydrogen atom) was given by̋Zhilinskiı́ and Michel in Ref. [56]. After reducing the Keplerian symmetry O(4)
(n-shell approximation) these authors consider various symmetry group actions on the first reduced phase space
S2 × S2. Using only group theory and invariant polynomials they reduce symmetries and represent the respective
reduced Hamiltonian functions on the space of orbits or theorbifold of the symmetry group action. We briefly apply
the approach of [56] to our concrete system.

In the presence of the additionalS1 symmetry the space of orbits or “orbifold”O is a three-dimensional algebraic
variety on which we can define and analyse our HamiltonianHsnf. To constructO we note that each orbit of theS1

action onS2 × S2 can be labelled by the values of four invariantsπ1, π2, π3, andπ4 (which generate the ring of all
S1 invariant polynomials) subject to the restriction (29a), whereπ4 = c. From this restriction we see immediately
that labelling of these orbits requires the values of onlythreeinvariants, such asπ1, π2, andπ4, while for the fourth
invariantπ3 only the sign should be given. It follows thatO can be embedded in Euclidean 3-space with coordinates
{π1, π2, π4}. Theπ3 > 0 andπ3 < 0 points ofO form two balls whose closure is the surface{π3 = 0}, which
using (29a) is defined by

π2
2 − [(n− π4)

2 − π2
1 ][(n+ π4)

2 − π2
1 ] = 0. (46)

In coordinates{π1, π2, π4} this surface resembles a square pillow (see Fig. 10, left). It is a 2-sphere with four
singular points, the fixed points of theS1 action, whereπ2 = π3 = 0 andπ1 = ±n or π4 = ±n. The wholeO is a
3-sphere with four singular points. Every point ofO except these four lifts to anS1 onS2 × S2. The four points are
relative equilibria of the first reduced problem, they lift to four equilibrium points onS2 × S2.

In the presence of an additionalZ2 symmetry which sendsπ3 → −π3 (typically a reversing symmetry such as
σ3 in (30a)–(30c)), the sign ofπ3 is not required. The two balls in the previous construction are identified. The
orbifoldO has three kinds of points which lift either to one or two circles, or to a point onS2 × S2. This orbifold

Fig. 10. Orbit space of theS1 × Z2 action onS2 × S2 for c ≥ 0 andπ1 > 0. Bold line sections with constantT1 = π4 = c, n ≥ c ≥ 0, show
images of second reduced phase spaces,Pn,c ∩ {π3 = 0} (left). Projection of the orbit space on the{c = 0} plane (centre). Projection of the orbit
space ofS1 ∧ Z2 × Z2 (right). Coordinatesπ1, c, andπ2 are in units ofn, n andn2, respectively.
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is constructed in Section III and Appendix A.3 of Ref. [56] and is used in Ref. [23]. The constantπ4 = c sections
ofO are images of reduced phase spacesPn,c. We can foldO once more in order to fully reduceZ2 × Z2 (see Fig.
10, right, and compare to Figs. 6 and 7).

Our Hamiltonian itself can be expressed as a function of(π1, π2, π4). 11 Considering the topology of constant
level sets ofHsnf(π1, π2, π4) defined onO we can now analyse all reduced HamiltoniansHn,c at once, see e.g.
[11,23,56]. In this way we can, to some extent, compensate for the necessity to consider individual second reduced
phase spacesPn,c which, however, remain indispensable for the study of the dynamics of the second reduced system.

5.3.3. Dynamics on the second reduced phase space
All systems with additionalS1 symmetry described above will have thesamesecond reduced phase spacePn,c.

The dynamics of these systems can be described using thesamePoisson algebra of invariantsπ1, π2, andπ3 restricted
toPn,c, i.e., the Poisson structure of the second reduced system. This structure can be obtained in a straightforward
way from definitions (25a)–(25f) and the Poisson structure onS2 × S2 in (18), namely

{π1, π2} = 2π3, {π3, π1} = 2π2, {π2, π3} = 4π1(n
2 + c2 − π2

1). (47)

Furthermore, the function

ψn,c(π1, π2, π3) = π2
2 + π2

3 −X2
n,c(π

2
1) (48a)

with

X2
n,c(π

2
1) = (n− c − π1)(n− c + π1)(n+ c − π1)(n+ c + π1) ≥ 0, (48b)

whose 0-level defines the second reduced phase spacePn,c in (29a), is a Casimir of the algebra (47). Usingψn,c we
can rewrite (47) as

{πi, πj } = εijk
∂ψn,c

∂πk
, (49)

and generate equations of motion as follows:

π̇i =
∑ ∂Hsnf

∂πj
{πi, πj } =

∑
εijk

∂Hsnf

∂πj

∂ψn,c

∂πk
. (50)

Thus for the second normal form

Hsnf = aπ2 − bπ2
1 = h, (51)

we obtain

d2π2
1

dt2
= {{π2

1 ,Hsnf},Hsnf} = 8[3(a2 − b2)π4
1 − 4(bh+ a2(n2 + c2))π2

1 − h2 + a2(c2 + n2)2], (52)

where we have usedHsnf = h andψn,c = 0 to replaceπ2 andπ3. In terms of the new variable

℘ = 4(a2 − b2)π2
1 − 8

3(bh+ a2(n2 + c2)), (53a)

11 In Section 5.3.2, we decomposed the generators of the ring ofS1 invariant polynomials into two groups,{π1, π2, π4} and{π3}, called principal
(or main) and auxiliary invariants. Such decomposition is known as integrity basis [62], homogeneous system of parameters [63], or Hironaka
decomposition [64]. It is generally possible for Cohen–Macauley rings. Main invariants define the same set of coordinates onall maps ofO
while auxiliary invariant(s) distinguish different maps. Only degree 0 and 1 of auxiliary invariant(s) is necessary to express any polynomial in
the ring. In the case of the fullS1 ∧ (Z2 × Z2) symmetry the ring is freely generated byπ2

1 , π2, andπ4; there are no auxiliary polynomials.
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this equation reads

℘̈ = 6℘2 − 1
2g2. (53b)

Its solution is the Weierstrass’ function℘(t; g2, g3) [57].

5.4. Attempts to use a second reduced space in perturbed Kepler systems withSSS1 symmetry: the asymmetric top
analogy

The angular momentum or asymmetric top interpretation of the perturbed hydrogen atom with axial (S1) symmetry,
and in particular of the quadratic Zeeman effect (QZE) with integralL1 = m was introduced in 1990–1991
in Refs. [18–21,28,29], where the second reduced Hamiltonian was represented on a 2-sphere. (Note that earlier
perturbation theory studies, such as [50], used “action–angle” variables, i.e., cylindrical coordinates, for their reduced
Hamiltonian.) This approach has been used extensively in Refs. [22,54,55]. We saw in Section 3.2.1 that the second
reduced spacePn,c is not alwaysdiffeomorphic to a 2-sphere and therefore, such angular momentum analogy calls
for comment. In essence, theS2 map used by these authors issingular for m = 0 (i.e.,c = 0). It is important to
understand the consequences of such singularity. To show once more that the axially symmetric perturbation of
the Kepler system studied in [18–22,28,29] is equivalent to our second normalized system (see Section 5.3) and to
uncover the above singularity, we construct an explicitS2 map in terms of dynamical variablesπ1, π2, andπ3.

5.4.1. Action–angle coordinates
The Poisson algebra (47) resembles so(3) andπ1, π2, andπ3 resemble components of an angular momentumJ .

More precisely, if we useJ1 = 1
2π1 [18–21] then (29a) suggests thatπ2 andπ3 depend on the conjugate angleϕ as

cosϕ and sinϕ. That this is indeed the case and that(1
2π1, ϕ) is an action–angle pair can be verified by tracing their

definition back to the KS coordinates(q, p). This has been repeatedly demonstrated [18–22,30–32] with a slight
difference that our more general situation requires an adjustment of the(q, p) coordinates to ensure thatπ4 andπ1

are diagonal. The transformation performing this adjustment is given by the symplectic matrix

Uχ = 1√
2


Rχ · · ·
· RT

χ · ·
· · Rχ ·
· · · RT

χ





1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 −1 0 0 0 1


, (54a)

whereRχ is the 2× 2 rotation matrix

Rχ =
(

cosχ sinχ

− sinχ cosχ

)
, (54b)

and angleχ is related toα andβ in (7),

α = cos 2χ, β = sin 2χ. (54c)

In the new KS coordinates

π4 = 1
2(−n1 + n2 − n3 + n4), π1 = 1

2(−n1 + n2 + n3 − n4), (55)



190 R.H. Cushman, D.A. Sadovskiı́ / Physica D 142 (2000) 166–196

whereni = 1
2(q

2
i + p2

i ) are actions of the four oscillators. The other components ofT andV are quadratic forms
in new (q, p) which are independent ofα, β and can be substituted into the definition ofπ2 andπ3 in (25b) and
(25c). After(q, p) are replaced by

qi =
√

2ni sinφi, pi =
√

2ni cosφi, i = 1, . . . ,4,

we obtain

π2 = X cosϕ, π3 = X sinϕ, ϕ = −φ1 + φ2 + φ3 − φ4, (56)

whereX2 = ∏4
i=1(2ni) equals (48b) andϕ is the angle conjugate to12π1 in (55).

5.4.2. SSS2 map of the reduced phase spacePc
The manner in which the authors of [18–21,28,29] map the second normalized (S1 symmetric) system on a sphere

is described as follows. The longitude coordinateϕ is introduced in (56). We choose axisπ1 as vertical, use (29b),
and define the latitudeθ so that

J1 = 1
2π1 = 1

2(n− |c|) cosθ. (57a)

Substituting (57a) into (48b) gives

X2 = sinθ2(n− |c|)2[(n+ |c|)2 − π2
1 ]. (57b)

It follows that the two other components must be

J2 = 1

2

π2

((n+ |c|)2 − π2
1)

1/2
, J3 = 1

2

π3

((n+ |c|)2 − π2
1)

1/2
. (57c)

The map

Pn,c → S2 : (π1, π2, π3) → (J1, J2, J3)

is, obviously, singular atc = 0 andπ1 = ±1, where it compensates for the singularity ofPn,c. Using (47) we can
easily verify thatJi do indeed generate an so(3) algebra,{Ji, Jj } = εijk Jk, with Casimir

J 2 = J 2
x + J 2

y + J 2
z = 1

4(n− |c|)2, (58)

and are, therefore, components of the angular momentumJ .
However, interesting and historically important the map ofPn,c onto S2 is, it is of limited value in our study

because it hides the singularity ofPn,c=0 (while bringing the(1 − 4J 2
z )

1/2 singularity into the Hamilton function
Hsnf(J ; c = 0)). Due to the singularity ofPn,c=0 all S1 symmetric perturbed Kepler systems arequalitatively
different from the rotating rigid body. In technical terms, there is little if any simplification to gain from the transfer
of the classical or quantum system to aS2 while both the classical equations of motion onPn,c (Section 5.3.3) and
quantization ofHsnf present no special problems.

5.5. Classical studies of the crossed fields system based on the second average

In 1987 van der Meer and Cushman [25] considered the orbiting dust system and showed that the qualitative
analysis of this perturbed Kepler system should be based on second normalization. This, of course, is true for the
analogous crossed fields system (see Section 1.3.1). A complete analysis [27] based on theHsnf reveals that for
different relative strengths of the electric and magnetic fields all qualitatively different possible behaviours envisaged
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in [25] occur in this latter system. The original system of [25] is qualitatively equivalent to the case of the weak
magnetic field whereb/a > 1 (Fig. 9, right).

Second normalization of the crossed fields system was recently implemented (independently from [25]) by von
Milczewski et al. [35–37]. In fact these authors performed the same simple averaging as described in Section 3.1,
and their result� differs from ourHsnf by a factor. They also implemented intuitively aEM-like mapping which
they called “adiabatic diagram” (Figs. 1, 9 and 11 of [35–37]). A comparison of our results to those of [35–37]
shows how strikingly close physicists can get to uncovering profound geometric properties when relying on correct
intuition and substantial experience in their analysis of concrete Hamiltonian systems. It also shows how important it
is to complement “traditional” methods of analysis by mathematical techniques such as singular reduction, invariant
theory, and basic concepts from differential geometry and differential topology presented from a practical point of
view in Refs. [25,26].

The authors of [35–37] focused on a particular type of motion whose trajectories either begin or end (or both) at
the originr = 0 in the physical 3-space because this type of motion is visible in the experiments on the real quantum
system [59–61]. In the regularized system, trajectories pass through the originq = 0 in 4-space when the angular
momentum vanishes, see (10a)–(10f). We can easily find the image of the constant level setL = 0 in the reduced
phase spacePn,c. From definitions (15), (25a)–(25f) and, of course, restrictions (12a), (12b), (29a) and (29b) we
find that whenL = 0

π1 = αK1, π2 = (2 − α2)K2
1 + (c2 − n2), (59a)

while

K2
1 ≤ n2 − c2

1 − α2
, |c| ≤ βn. (59b)

Whenα 6= 0 this gives a parabola

π2 = 2 − α2

α2
π2

1 + (c2 − n2). (59c)

Note that theL = 0 level set inPn,c depends on the orientation ofT1 defined by the parameterα. Consequently,
for each given value ofT1 = c theL = 0 set should be considered together with corresponding level sets of the
second reduced Hamiltonian functionHsnf(α). As can be seen in Fig. 11, theZ2-symmetric relative equilibrium

Fig. 11. Representation of theL = 0 level set on the reduced phase spacePn,c(π3 = 0 projection). Constant level sets ofH̃n,0 with b/a = −0.4
(α ≈ 0.684) are shown by bold black lines while theL = 0 set is shown by a white line. This set is present for|c|/n ≤ √

1 − α2 ≈ 0.729.



192 R.H. Cushman, D.A. Sadovskiı́ / Physica D 142 (2000) 166–196

Fig. 12. Invariant subspaces intersecting theL = 0 set (shaded area) in the image of the energy–momentum map for different parametersb/a.
Quantum numbern and classical valuencl are the same as in Fig. 9.

with π1 = π3 = 0 andπ2 < 0 belongs to theL = 0 set whenc satisfies (59b). TheZ2 symmetry of the equilibrium
corresponds toσ2 in (30a)–(30c) and corresponding motion is restricted to the reflection plane(Q2,Q3) in the
initial physical 3-space.

We can see in Fig. 11 that other level sets ofHsnf intersect theL = 0 set in four (or two) points onPn,c, or do
not intersect it at all. The corresponding trajectories are not, of course, restricted to the plane(Q2,Q3). The level
set corresponding to the doubly pinched torus has fourL = 0 points. Similar study can be done for other values of
c and the results can be represented in the image of theEMmap. At eachc the upper and lower limits of the values
h of Hsnf such that{Hsnf = h} ∩ {L = 0} 6= ∅ are defined byK1 = 0 (relative equilibrium) and maximum|K1|
(maximumπ2 of the {L = 0} level set, see intersection{L = 0} ∩ {π3 = 0} in Fig. 11), where the value ofHsnf

reaches

Hsnf

α2n2
= −(1 + b)(1 + a)

c2

n2β2
+ 1 + b − a.

In Fig. 12 the image of all level sets ofHsnf which intersect theL = 0 set is shown by the shaded area. This is
precisely the representation used in [35–37].

The geometry of the system is not analysed in [35–37] and monodromy is not uncovered. The authors do not
reconstruct the inverse image ofEM albeit for an interesting special case resulting in a periodic orbit (Fig. 9a and
10a of [35–37]) and do not even relate the four relative equilibria of the first normalization (already introduced in
[33,34]) to the singularities in the image ofEM. Thus the two equivalent equlibria with(π1, π2, c) = (±1,0,0) are
missing in the analysis in Section IIIA of [35–37] even though the singularity of�D in their Fig. 1 clearly indicates
their presence and, in fact, the presence of the doubly pinched torus.

5.6. Comparison with early quantum calculations

Analysis of the quantum crossed fields problem goes back to 1983 when Solov’ev [38] analysed the energy
level system using ann-shell second order perturbation theory. He realized that the first order problem remained
degenerate (indeed, for a given value ofm which Solov’ev callsq = n′ + n′′, there aren−m states with the same
first order correctionε〈T1〉). He proceeded by diagonalizing his second order correction on the subspace ofn-shell
functions with fixedm (Section 3 of [38]). His resulting zeroth order equivalent operator3q (Eq. (10) of [38])
is a direct quantum analogue of the second normal formHn,c (33) obtained by averagingHfnf along the orbits
of XT1.

Later Braun and Solov’ev [42] calculated quantum energies for3q of [38] in essentially the same way as we
do above. Using the field strength ratio as a parameter they distinguished three different domains of the parameter
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Fig. 13. Correlation diagram. Thin lines show the evolution of quantum energies (eigenvalues of the matrix ofHn,c) with quantum number
n = 11 and〈T1〉 = 0 between the Zeeman and Stark limits. Bold lines represent the energy of relative equilibria ofHn,c with classical value
ncl = √

120 andc = 0. Dashed lines mark the monodromy intervalI.

values, including the one which we call the monodromy intervalI (34). The two relative equilibria corresponding
to the singular points onPn,0 appeared as singularities of the effective semiclassical “potential”U(k) shown in Fig.
5 of [42]. When the value of the scaled field parameterα2 was contained in the intervalI, the authors associated
these singular points with a “quasibarrier”.

Fig. 13 illustrates the analysis of the energy level system carried out by authors of Ref. [42] (cf. Fig. 4). Since
the energy level structure is analysed separately for eachc (orm), monodromy cannot be seen in this way. On the
other hand, one can clearly observe the correspondence between the quantum spectrum and the energies of relative
equilibria shown by bold lines. These lines give the limits of the quantum spectrum. In addition, they show the
threshold at which doublets of levels (corresponding to the double well 2-oscillator) appear/disappear near the Stark
and the Zeeman limit (to compare with the pure Zeeman limit see Figs. 2 and 3 of [49]).

6. Discussion

We have demonstrated explicitly that the problem of hydrogen atom in orthogonal (crossed) magnetic and
electric fields has the nontrivial property of monodromy. Our analysis develops geometric techniques which allow
monodromy to be studied in other problems involving the hydrogen atom in fields. We have paid proper attention
to the singularities of the second reduced phase space.

Our work raises a number of important questions. We have relied on normalization and attempted to extend the
phenomenon of monodromy to systems which are nonintegrable in principle but which still have most of their
KAM tori intact. Since this phenomenon is associated with the global organization of the whole family of invariant
tori, we have assumed that it is stable under small perturbations and have demonstrated that as such it exists in the
hydrogen atom in crossed fields. At the same time, more detailed understanding of monodromy, or rather of its
analogue in such systems remains to be achieved. In particular, we would be greatly interested in the analysis of
local action–angle variables for the Cantor sets of KAM tori surrounding the heteroclinic tangle which corresponds
to the doubly pinched torus of our integrable approximation. Since these KAM tori fit together into smooth families
of tori, the monodromy present in the integrable approximation survives perturbation and as such exists in the
hydrogen atom problem in orthogonal electric and magnetic fields when the parameterα lies in the intervalI.
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A different group of questions is associated with “quantum monodromy”. Here again one should attempt to
generalize our methods to quantum systems whose classical analogues are not integrable, but which can be
treated within the framework of quantum perturbation theory. When applying the ideas of this paper to quan-
tum systems, one should be aware of differences between the classical and quantum normal form algorithms
[58].

Persistence of quantum monodromy under small perturbations is also a subject of study on its own. We are,
nevertheless, convinced that future studies of the hydrogen atom in crossed fields will reveal the energy level
structure which we obtained for the quantized integrable approximation and which is characteristic of all systems
with monodromy. Such studies can answer a very interesting question of how far this structure will persist with
increasing perturbation (energy).

Perturbed hydrogen atom and the crossed field system in particular [59–61] continue to attract consider-
able interest of experimentalists. Application of the idea of monodromy in experimental studies depends on
how the above questions are answered. We think that our system will become experimentally important pre-
cisely because it can, ideally, be “tuned” in and out of the intervalI of field parameterα, where monodromy
exists.
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Appendix A

A.1. Comparison of present work with [23,56]

Note the correspondence of invariant polynomials of theS1 action onS2 × S2

Refs. [23,56] Present work

nµ π4

nν π1

n2ξ π2 + π2
4 − π2

1
n2σ in (6) of [23] 1

2π3

A.2. Comparison of present work with [38]

Similar to [38] the authors of [35–37] usen-scaled approach (which is more convenient for a quantum study, cf.
Section B1 of [24]) as opposed to the energy-scaling in the present paper. To higher order terms, i.e., when we set
n ≈ 2/ω, their notation corresponds to ours as indicated below
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J. von Milczewski et al. [35–37] Present work

Field strengthsB andF G andF
C ≡ 1 ChargeC
(x, y, z) in physical 3-space (Q2,Q3,Q1)

p in physical 3-space P in (1)
KS coordinatesu and momentaP 4-vectorsq andp
ω andn Same, see (6),(12a) and (12b)
VectorsL andA L andK
VectorsJ andK 1

2(K ± L)

a = 3nF/B ≈ f
g

= β
α

L̃ andÃ T andV in (15)
J̃ andK̃ x andy in (16a) and (16b)
Value ofL̃z c, value ofT1 = π4

Parameterγ (a) in Eq. (25) b
a

= 1
2α2 − 1 − α2

�(γ ) b
a
π2

1 − π2 = − 1
a
H̃n,c + b

a
(n− |c|)2, see(33)

Ps andPu σ2-symmetric relative equilibria withπ1 = 0 andπ2 = ±(n2 − c2)

A.3. Invariant polynomials for various orders ofHsnf

It can be shown using invariant theory [27] that the ring of all polynomials in(T1, T2, T3, V1, V2, V3) which are
invariant w.r.t. to theS1 × Z2 × Z2 action onS2

n/2 × S2
n/2 is freely generated by(π2, V

2
1 , T1). Polynomials in the

kth order of the second normal formHsnf are of degreek+ 1 in T s andV s. Consequently (cf. (25a)–(25f)), to third
orderHsnf has the following terms

Order ofHsnf Invariant polynomials

1 T1

ε π2, V
2
1 , T

2
1

ε2 π2T1, V
2
1 T1, T

3
1

ε3 π2T
2
1 , V

2
1 T

2
1 , T

4
1 , π

2
2 , π2V

2
1 , (V

2
1 )

2

References

[1] J.J. Duistermaat, Comm. Pure Appl. Math. 33 (1980) 687.
[2] R.H. Cushman, L.M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997, see Appendix D.
[3] R. Cushman, Centrum voor Wiskunde en Informatica Newsletter 1, 4 (1983); see also Chapter IV of R.H. Cushman, L.M. Bates, Global

Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997.
[4] R. Cushman, J.C. van der Meer, Lecture Notes in Mathematics, Vol. 1416, Springer, Berlin, 1991, p. 26.
[5] R. Cushman, H. Knörrer, Lecture Notes in Mathematics, Vol. 1139, Springer, Berlin, 1985, p. 12.
[6] J.C. van der Meer, The Hamiltonian Hopf Bifurcation, Lecture Notes in Mathematics, Vol. 1160, Springer, Berlin, 1985.
[7] L. Bates, Z. Angew, Math. Phys. 6 (1991) 837.
[8] M. Zou, J. Geom. Phys. 10 (1992) 37.
[9] L. Bates, R. Cushman, Meccanica 30 (1995) 271.

[10] R.H. Cushman, D.A. Sadovskiı́, Europhys. Lett. 47 (1999) 1.



196 R.H. Cushman, D.A. Sadovskiı́ / Physica D 142 (2000) 166–196
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