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On the example of bending vibrational polyads of the acetylene molecule (C2H2) in the approximation of the 1:1:1:1 resonant oscillator with
axial symmetry, whose geometry is similar to the n-shell approximation of the perturbed hydrogen atom, we show how remaining invariant tori of
the underlying classical non-integrable system form a nontrivial continuous family with monodromy. We read this monodromy off the quantum
energy spectrum which was observed experimentally by spectroscopists, and we uncover its origins through the particular topology, geometry, and
symmetry. We explain how monodromy characterizes the chaotic region surrounded by the tori. We detail the explicit correspondence between
the bending polyads of C2H2 and the n-shells of the hydrogen atom, and uncover the dynamical SO(3) symmetry of the bending polyads and the
corresponding spherically localized vibrational states.
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1. Introduction1

A study of any classical Hamiltonian dynamical system and2

its quantum analog begins with investigating integrability. The3

presence of invariant tori, typical for integrable systems, is of4

primary interest of this examination. Locally, we are guaran-5

teed to have action-angle variables on the tori, and the Einstein-6

Brillouin-Keller (EBK) action quantization gives us the cor-7

responding quantum spectrum. Hamiltonian monodromy [1]8

characterizes how invariant tori fit together in the classical9

phase space. It allows to proceed from the simple local action-10

angle description towards the global geometric understanding11

of the classical dynamics. Similarly, quantum monodromy [2]12

incorporates local oscillator-like quantization into the repre-13

sentation of the entire spectrum of the corresponding quantum14

system. Specifically, systems with nontrivial monodromy, or15

simply—with monodromy, do not have globally single-valued16

and smooth action variables. The respective quantum system17

cannot be described using one global set of quantum numbers18

which are smooth in the limit ~ → 0. In the space of integrals,19

the quantum spectrum of this system is represented by a locally20

regular lattice with a defect [3].21

The first study of a fundamental physical system with mon-22

odromy, the perturbed hydrogen atom [4, 5], relied on a conjec-23

ture, later confirmed [6, 7], that monodromy can describe the24

surviving Kolmogorov-Arnold-Moser (KAM) tori of perturbed25

integrable systems. This gave immediately an opening to ana-26

lyze many important atomic and molecular systems, including27

rotating quasilinear molecules near their unstable linear equilib-28

ria, such as H2O [8] and others [9], a rich class of systems with29
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coupled slow-fast angular momenta [10], the H+2 ion [11], rotat-30

ing dipolar symmetric top molecules and diatomic molecules31

subjected to an external electric field [12, 13], and resonant32

“swing-spring” vibrations of CO2 [14]. Several pivotal gen-33

eralizations followed [15–20], and similar concepts were intro-34

duced in other fields [21, 22]. Knowing dynamical connections35

across the families of invariant tori and the respective quantum36

states becomes decisive when the system is controlled through37

time-dependent perturbations [23].38

2. Main statement39

The most distinctively new general conjecture in our present40

work is the possibility to introduce monodromy in specific glob-41

ally non-integrable systems. We formulate and develop our idea42

on the concrete physical example of bending vibrations of the43

acetylene molecule [24]. After reduction in the (1:1):(1:1) res-44

onance approximation, this system has two degrees of freedom45

and compact four-dimensional classical phase space S2×S2. We46

exploit the fact that in addition to stable (elliptic) equilibria, sys-47

tems on S2×S2, and, likewise, systems on CP2, another compact48

classical phase space with fundamental physical applications,49

possess continuous families of stable low-dimensional tori, or50

critical fibres S1. Adapting Nekhoroshev’s terminology [17],51

we call these families “upper bounding walls”, or simply—52

walls W. In our particular example [24], walls are fixed by ad-53

ditional discrete symmetries. Similarly to the saturated neigh-54

bourhoods of elliptic equilibria, domains of approximate inte-55

grability M exist near the walls, and, depending on the wall56

topology, or more specifically, depending on the singularities57

of the walls, regular KAM tori T2 within M may form a family58

with nontrivial monodromy, while the rest of the phase space59

is taken over by chaotic dynamics. In our concrete example,60
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Figure 1: Quantum monodromy in a non-integrable system with walls (color
online). The two shaded areas encased by bold solid lines represent the base of
the combined toric fibration B and the lower bounding walls, respectively, in the
image of the partial integral map I. This particular arrangement corresponds to
the example of the vibrational bending polyads of acetylene. Specifically, left
and right quantum lattices model j′ and j′′ localized spherical states of polyad
Nb = 12, and the integral defining the vertical axis corresponds to the vibra-
tional energy (cf fig. 2). Arrows represent local lattice bases connected along
the closed loop starting near the top vertex and going clockwise. Comparing
the returning vectors (dashed lines) to the initial ones, we compute monodromy.

chaotic dynamics concentrates in the neighbourhoods of two1

complex-hyperbolic (focus-focus) equilibria. In general, it is2

the monodromy which we compute along the bounding walls3

that gives information on the inaccessible chaotic region.4

In order to describe the foliation of M, let us introduce the
mapping

I : M ⊆ P→ B ⊂ R2 : (q, p) 7→
(
I1(q, p),I2(q, p)

)
which we can call a “partial integral map”, and which differs5

from the more familiar momentum and/or energy-momentum6

maps in that (i) its range covers effectively only part of phase7

space P available to the system, and (ii) none of the integrals8

is necessarily a momentum (defining globally an S1 action on9

P). A constructive argument affirms the existence of map I in10

Hamiltonian dynamical systems on compact four-dimensional11

phase spaces P [24]: one of its integrals is readily available as12

energy, while the other can be constructed by extending local13

actions across the region of integrability M along the bounding14

wall W ⊂ ∂M.15

The union of the integrability domains M and the walls can be16

considered as a fiber bundle whose base is the image of I and is17

a domain B ⊂ R2 bounded partially by the image of the walls,18

or “lower bounding walls”, seen as curves in R2 (fig. 1). We19

consider closed loops going in the base near and along lower20

walls. Monodromy corresponding to these loops is a function21

of the singular points present on the wall1. We can expect re-22

sults similar to the Duistermaat–Heckman theorem (as detailed23

in [25], see also [26, 27]). The quantum states which are local-24

ized near the wall form a locally regular Z2 lattice in the base25

domain B which may have monodromy (fig. 1).26

To appraise the particular setup in fig. 1 and its concrete re-
alization in sec. 3 below, let us turn to the elliptic equilibria on
the compact phase spaces P which we consider here. These
equilibria are bound to exist on P and Morse theory can sup-
ply more information on them. Near each such equilibrium, the
system is approximated naturally as an oscillator. In two de-
grees of freedom, its bifurcation diagram is a familiar closed
quarter plane

V = {(I1, I2) ∈ R2, I1 ≥ 0, I2 ≥ 0}, ∂V = R≥0 ∪ R≥0,

whose interior points, vertex, and regular boundary points lift27

to regular tori, the equilibrium point O, and periodic orbits S1,28

respectively. The latter are critical lower-dimensional tori con-29

stituting two normal mode families. The preimage of the lower30

wall ∂V is the upper bounding wall which consists of two con-31

tinuous S1 families contracting to the common point O. This32

can be seen as two two-dimensional surfaces in R4 intersecting33

generically in one point of the four-dimensional space. Un-34

der typical perturbations, the integrable oscillator approxima-35

tion becomes increasingly inadequate away from O, but the two36

S1 families may continue and even remain critical. Let us now37

consider two elliptic equilibria O+ and O− at which the energy38

reaches its maximal and minimal values on P. They correspond39

to the upper and lower vertices in fig. 1 and to the normal modes40

of the concrete system in sec. 3. The fundamental premise of41

the structure in this figure is the assumption that the families of42

critical orbits coming out of O+ and O− connect so that we can43

continue from one equilibrium to another. As a result, the entire44

lower bounding wall is circular. Moreover, complemented with45

two critical points O±, each connected S1 family constitutes a46

2-sphere S2 ⊂ P. Consequently, the upper wall W ⊂ P is a47

non-simply connected joint union of two spheres, W′ and W′′,48

intersecting on {O±}. Note that if an S1 orbit on W′ or W′′ goes49

hyperbolic as the dynamical parameter n increases, a part of the50

sphere will no longer be bounding (but rather form an internal51

wall) and we would have to follow a more complicated bound-52

ing wall. In the concrete system (sec. 3), several such phenom-53

ena occur at large n as Hamiltonian pitchfork bifurcations, and54

so in [24], we considered modified integrability domain M and55

base B to obtain similar results at larger n. Presently, we keep56

the most basic setup and do not discuss such situations.57

Further assumptions behind fig. 1 are simplifying but not58

stringent and are inspired by the concrete example of bending59

polyads (sec. 3). Thus we can suppose that the spheres W′ and60

W′′ are smooth and can be equipped with a constant symplec-61

tic 2-form proportional to the area element. We choose actions62

j′ and j′′ which are conserved on the respective spheres, and63

which turn into oscillator actions I1 and I2 near the equilibria64

O. Because W′ and W′′ are critical, the respective actions j′ and65

j′′ reach their maximal constant values on them. For simplic-66

ity, we assume the latter to be equal, and we use the energy H67

to define a height function on each sphere. The above assump-68

tions on the geometry of and the symplectic structure on W′ and69
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W′′ turn quantization into the standard procedure for the angu-1

lar momentum. Quantum states localized near W′ (and/or W′′)2

have values of quantum numbers j′ = n (and/or j′′ = n) slightly3

below the classically allowed maximal value and form 2n + 14

multiplets stretching along the respective parts of the lower wall5

in fig. 1. After excitation in the complementary degree of free-6

dom, j′ or j′′ step down by 1 and we have 2n − 1 multiplets. In7

the domains V± near maximum and minimum energies where j′8

and j′′ become oscillator actions, the two resulting sublattices9

intersect in a precise way shown in fig. 1.10

3. Bending vibrations of acetylene11

We turn to our molecular example which demonstrates that12

the general scheme in fig. 1 has concrete physical realiza-13

tions. Two doubly degenerate bending vibrations of acetylene14

C2H2 can be well approximated as a (1:1):(1:1) resonant os-15

cillator with axial symmetry. Quantum states of this system16

form polyads characterized by polyad number Nb and angular17

momentum `. They were investigated extensively by spectro-18

scopists [28]. The underlying dynamics was also scrutinized19

in depth [29–31], see our recent paper [24] for a review and20

complete references. However, the geometry of the underlying21

reduced classical system with two degrees of freedom was not22

fully described. We show in [24] that this system is equivalent23

to the Keplerian n-shell approximations (for a detailed introduc-24

tion, see [32] and citations therein). The equivalence is explicit25

in the Kustaanheimo-Stiefel (KS) variables. So, in particular,26

n-shells of the hydrogen atom correspond to polyads with ` = 027

and Nb = 2(n − 1). Unless we allow for magnetic monopoles,28

polyads with ` > 0 have no such analogs but have the same29

reduced phase space topology S2×S2 [24].30

On the other hand, we note an important dynamical dif-31

ference between Stark-Zeeman perturbations of the hydrogen32

atom and bending polyads: while the former have an additional33

smallness parameter rooted in the specific scaling of perturba-34

tions with n [32], no such scaling occurs for vibrations. So,35

generally, no approximate “third” integral of motion can be ex-36

pected to exist in addition to (Nb, `), and there are strong rea-37

sons to believe—and many researchers did so—that the internal38

polyad dynamics for large Nb ≥ 10 is entirely irregular. This is39

why our discovery of dynamical symmetries and monodromy40

in this system is an important result.41

Our analysis in [24] relied on the methods developed ear-42

lier [32] and required substantial technical developments. In43

the present paper, we refine the argument of [24] and reveal44

its geometric elegance and generality which deserve attention45

across different fields of dynamical theory, atomic and molecu-46

lar physics, mechanics, and mathematics.47

The bending polyad system on S2×S2 inherits discrete sym-
metries of the molecule. Their analysis gives important clues
to the dynamics [24]. Invariant subspaces of S2×S2 with purely
spatial, and therefore symplectic, nontrivial isotropy are of pri-
mary interest. These include four isolated fixed points, or poles
and two spheres W′ := S2

j′ and W′′ := S2
j′′ with stabilizers of

order 2. Using vectors L = (L1, L2, L3) and K = (K1,K2,K3)

Table 1: Part of the vibrational bending polyad Hamiltonian of C2H2 which
includes terms up to degree 2 in dynamical variables {K, L} and is restricted to
` = 0. Parameters are adjusted to reproduce the data [28] for 2(n−1) = Nb ≤ 14
to their accuracy of 0.05 cm−1.

Term Parameter cm−1 Term Parameter cm−1

n 1332.0650(62) K1 120.310(11)
( j′)2 5.7669(15) n2 −4.1318(23)
ξ′ −6.167(13) nK1 −11.7249(59)
ξ′′ −2.1702(69)
L2

1 0.0604(23) K2
1 0.4259(20)

which obey the relations

K · L = 0 and K2 + L2 = n2,

and which represent the angular momentum and the eccentric-
ity, respectively, in Keplerian systems [32], as coordinates and
dynamical variables, we find that (K, L) equal (±(n, 0, 0), 0) and
(0,±(n, 0, 0)) at the poles. While the K1 = ±n poles correspond
to two different critical one-point orbits of the symmetry group
action, a spatio-temporal symmetry makes the L1 = ±n poles
equivalent and they form one two-point orbit. The spheres are
maximal constant n-level sets of the norms j′ and j′′ of respec-
tive vectors

J ′ = (K1, L2,K3) and J ′′ = (K1,K2, L3).

They intersect each other in {K1 = ±n} and form a joint union48

space W with one nontrivial 1-cycle. We will see that W is the49

upper bounding wall whose image is a circle with two singular50

points corresponding to {K1 = ±n}, and that this image consti-51

tutes the lower wall (solid boundary in fig. 1).52

The poles are necessarily equilibria for any bending vibra-53

tional polyad [24]; their dynamical characterization was well54

understood [29–31]: {K1 = ±n} correspond to two bending nor-55

mal modes and {L1 = ±n} represent a circular nonlinear mode.56

At low excitations, the system is governed by the large linear57

detuning term K1 (see table 1) whose parameter reflects the fre-58

quency difference of the two bending normal modes. The sys-59

tem has four equilibria, the minimum number on S2×S2 [24];60

{K1 = ±n} are elliptic with maximal (for K1 = n) and minimal61

(for K1 = −n) energy within the polyad, while {L1 = ±n} are62

complex hyperbolic. Higher up, in the interval of n = 7 . . . 10,63

the quadratic part of the reduced Hamiltonian begins to domi-64

nate and several bifurcations occur at the poles. In particular,65

“local modes” emerge at {K1 = ±n} [24, 29–31] thus destroy-66

ing any chances for K1 to serve as an approximate global third67

integral (momentum).68

The importance of the two spheres S2
j′ and S2

j′′ with a sym-69

plectic isotropy group was uncovered in [24]. These spaces70

are dynamically invariant, i.e., the trajectories of the system do71

not leave them and foliate them into constant energy level sets72

which are, generically, circles S1 (periodic orbits). In an inte-73

grable system, this constitutes two continuous families of criti-74

cal (lower-dimensional) fibres. Recalling how W = S2
j′ ∪ S2

j′′ is75

connected, we obtain one united family.76

The Poisson structure matches constructively our interesting
geometry. We observe that vectors J ′ and J ′′ represent two
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Figure 2: Quantum lattices of bending vibrational states of polyad Nb = 12, ` = 0 of acetylene in the approximation with third integral j′ (left) and j′′ (right). Lattice
nodes (circles, color online) represent energy levels [28] of four different symmetry species; gray vertical bars display errors of the integrable approximation to each
state. The nodes in the j′ and j′′ panels can be identified using the subscripts which give unique multiplicity indices of the eigenstates within their symmetry type.
Elementary lattice cells (shaded quadrangles) and arrows illustrate the computation of monodromy according to the scheme in fig. 1. The energy axis nonlinearity
facilitates understanding the lattice structure. The initial and final cell bases (mid-side arrow heads) correspond to those in fig. 1.

angular momenta. Indeed, their components span two distinct
so(3) subalgebras of so(4) with Casimirs j′ and j′′. The latter
satisfy the relation

( j′)2 + ( j′′)2 + L2
1 − K2

1 = n2

and do not Poisson commute. Near W, they can be assimilated1

with local actions, one of which remains large and constant2

along W′ or W′′. Because this large action attains its maximal3

value Nb/2 on the respective sphere, W is a bounding wall. On4

each sphere W′ and W′′, we have a one-degree-of-freedom re-5

stricted dynamical system whose equations of motion are Euler-6

Poisson equations for the components of J ′ and J ′′, respec-7

tively. This is similar to the reduced freely rotating rigid body8

(the Euler top) and to the polyads of doubly degenerate oscilla-9

tors, albeit here we have specific restricted contributions from10

two doubly degenerate normal modes in near 1:1 resonance.11

The Hamiltonian for a Nb-polyad with ` = 0 can be written
in terms of j′ or j′′, and ξ′, ξ′′, K1, and L2

1 (table 1), where

ξ′ = L2
2 − K2

3 and ξ′′ = L2
3 − K2

2

Poisson commute with j′ and j′′, respectively. The non-12

commuting terms vanish on W. So, in particular, the restricted13

Hamiltonian H ′n : W′ → R is a function of j′, ξ′,K1. This Ha-14

miltonian describes exactly the dynamics on W′, but it can also15

be used to approximate the dynamics in the neighbourhood of16

W′ where j′ is large (cf. left shaded domain in fig. 1). Sim-17

ilarly, H ′′n : W′′ → R is a function of j′′, ξ′′,K1 describing18

the dynamics on and near W′′ where j′′ is large (right shaded19

domain in fig. 1). Both approximations apply simultaneously20

near the poles {K1 = ±n} where both j′ and j′′ are large (ver-21

tices in fig. 1). On the other hand, since both j′ and j′′ vanish22

in {L1 = ±n}, both approximations fail in the sufficiently small23

open neighbourhoods Σ± of {L1 = ±n}. This strongly suggests24

that the dynamics in Σ± is chaotic.25

The quality of the above integrable approximations and the26

extent of the integrability domain M = M′ ∩ M′′ near W de-27

pend on the parameters of the non-commuting terms. Thus we28

can see from table 1 that when we use j′, the parameter of L2
129

becomes anomalously small while that of ξ′′ is quite moder-30

ate. This means that the bending vibrational polyad system of31

acetylene has dynamical symmetry SO(4) ⊃ SO(3) with addi-32

tional good quantum number (momentum) j′ [24]. On the other33

hand, the j′′ approximation is less global. This approximation34

averages out large ξ′ and L2
1 contributions, and has a substantial35

quadratic term K2
1 .36

In order to see how the two integrable approximations re-37

produce the polyad states, we treated H ′ and H ′′ as effec-38

tive Hamiltonians and re-adjusted their parameters attributing39

higher weights to levels with large j′ and j′′, respectively. Our40

results for Nb = 12 are presented in fig. 2 as two complementary41

energy-momentum lattices2 whose (2 j+ 1)–point columns cor-42

respond to multiplets of states with the same momentum j = j′43

or j′′. The largest- j multiplet (leftmost or rightmost column in44

fig. 2) is constituted by the levels localized near the walls W′45

or W′′, and represents most closely the restricted dynamics on46
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the respective spheres. Near the maximal and minimal energies,1

we observe doublets which correspond to local modes created2

after bifurcations at the poles {K1 = ±n}. We can see that the3

j′ approximation in fig. 2, left reproduces almost all energies,4

its errors of 1–5 cm−1 being negligible in the scale of the plot.5

The j′′ approximation is visibly in trouble at low j′′, but for6

the maximal j′′ = Nb/2 and the one below it, the errors remain7

low, within 3 cm−1. This confirms the dynamical stability of8

bounding walls W.9

4. Computation of monodromy10

We continue exploring the Nb = 12 energy-momentum lat-
tices in fig. 2. Like two charts, they represent differently the
same multiplet of (Nb/2+ 1)2 = 49 quantum eigenstates whose
symmetry type and additional multiplicity index (within the
group of states of the same symmetry sorted by energy) identify
them unambiguously. For the maximum momentum j = Nb/2
with j = j′ or j′′, the lattices can be used adequately to follow
the states localized near W. Since the components of W are S2

spheres, we can call such states spherically localized. Near the
maximal and the minimal energies of the shell, or simply near
the poles {K1 = ±n}, the j′ and j′′ lattices overlap, and either
lattice can be used so that we can switch between them. In fact,
momenta ( j′, j′′) give the choice of local actions of the dou-
bly degenerate oscillators at {K1 = ±n}. The states with large
( j′, j′′) ≈ Nb/2 have, therefore, stronger localization. Specif-
ically, they are localized near the elliptic equilibria {K1 = ±n}
when Nb is low, or near and within the local structures emerging
after these equilibria undergo supercritical Hamiltonian pitch-
fork bifurcations. We observe that maximal- j states correspond
to the outermost points of the lattices. So the j′′ = Nb/2 states
follow the two-piece smooth right boundary of the j′ lattice in
fig. 2, left. At the same time, the 〈L1〉 values suggest that the
complex hyperbolic poles {L1 = ±n} together with their neigh-
bourhoods Σ± map into the interior of the low- j domains. It also
follows that at low Nb, near the maximal and minimal energy,
the lattices overlap precisely as in the model in fig. 1, i.e., like
a Z2 lattice filling a quarter-plane. This allows connecting lo-
cal quantum numbers within the family of spherically localized
Nb, ` = 0 shell eigenstates, see figs. 1 and 2, and computing
monodromy. In the appropriately chosen initial local action ba-
sis (figs. 1 and 2), for a closed path that follows the image of
the wall W, the resulting monodromy matrix is(

1 2
0 1

)
.

This computation is illustrated by the elementary cell transport11

in fig. 2. Comparing to its predecessor, fig.10 of [24], we use12

a slightly different path in fig. 2 in order to avoid the region13

of local mode doublets in the j′′ lattice which appear at Nb >14

10, and to follow a more straightforward approach represented15

schematically in fig. 1.16

5. Conclusions17

With regard to the similar earlier results in systems with (ap-18

proximate) global integrability [5], the near-integrable KAM19

systems [6, 7], and the most recent variation on the theme [33],20

we like to point out that in contrast to figures 3 and 9 in [5] and21

other similar figures of global lattices with defects, our fig. 122

presents two overlapping Z2 lattices which do not share the mo-23

mentum integral and do not cover the whole spectrum. Further-24

more, in the past, the off-diagonal element of the monodromy25

matrix was associated with the presence of the particular singu-26

lar fiber(s) whose image gets encircled in the base of the fibra-27

tion [5, 10, 32, 33]. The idea came from the geometric mon-28

odromy theorem [34] and similar statements in the general sin-29

gularity theory [35] which treated monodromy as global conse-30

quence of local singularities or singular fibres. In the Hamilto-31

nian framework, the latter correspond, most generically, to the32

pinched torus, the homoclinic connection of the stable and un-33

stable manifolds of the focus-focus equilibrium. Its counterpart34

in the Picard-Lefschetz singularity theory is the A1 singularity.35

In our present work, while neither singular nor regular invariant36

tori persist in the neighbourhoods Σ± of the focus-focus equi-37

libria {L1 = ±n}, we examine monodromy directly, globally,38

away from Σ±. In this respect, our approach is similar to that39

of [25] where monodromy is consistently related to the poly-40

tope boundaries of the base of the fibration. Considering gen-41

eral (singular) Lagrangian fibrations with compact total spaces42

[36, 37], we like to repeat that our analysis concerns primar-43

ily systems on compact symplectic 4-manifolds S2×S2 and CP2
44

which allow bounding walls and have many important known45

physical realizations. The S2×S2 examples include perturbed46

Keplerian systems, such as the hydrogen atom discussed here,47

or Rydberg atoms and molecules, resonant bending vibrational48

modes of molecules, notably those of linear molecules C2H249

or C2N2, vibration-rotation systems [38], specifically the rota-50

tional structure of vibrational polyads formed by doubly degen-51

erate modes, and last but not least, various coupled angular mo-52

mentum systems [10]. The CP2 examples concern the structure53

of vibrational polyads formed by triply degenerate vibrational54

modes of molecules (notably highly symmetric molecules SF6,55

CH4 [39], and others) or nuclei, or quasi-degenerate modes of56

simpler molecular systems, for example O3 [40].57
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Notes61

62 1 With each singular boundary point, we can associate (isolate) a mon-63

odromy matrix contribution which may depend on the type of the singular-64

ity, and specifically, on its isotropy (stabilizer). Once contributions from all65

singular points on the boundary are established, the monodromy map as-66

sociated with a cyclic path along the boundary can be defined without any67

additional contributions coming from the regular parts of the boundary.68

2 Comparing fig. 2 to fig.10 of [24], we note the difference in the momenta.69

The latter are introduced in [24] as extrapolated local actions and are re-70

lated to j′ and j′′. We should also notice the two interchanged points g+,071
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and g+,1 in the lower part of the j′ lattice. Their present placement is in bet-1

ter agreement with the expectation values of 〈K1〉 and 〈( j′)2〉 in the exact2

spectrum.3
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