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Abstract

Monodromy, or the most basic obstruction to global action-angle coordinates is shown to be present in the well known
problem of two coupled angular momenta. It is also shown that in the corresponding quantum problem monodromy
manifests itself as the redistribution of energy levels between different multiplets of the quantum spectrum. q 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Advances in classical dynamical theory and their
relevance to quantum mechanics can be often best
understood on simple examples. In the present note
we provide an example that highlights certain global

w xaspects of classical integrable systems 1 , especially
the obstruction to the existence of global action-an-

w xgle variables known as monodromy 2 .

1.1. Hamiltonian, notation, symmetry

We consider a simple problem of two coupled
Ž . w xangular momenta two rotors S and N 3 with the

Hamiltonian function

1yg g
Hs S q NPS , 0FgF1, 1Ž . Ž .z< < < < < <S N S

1 E-mail: zhilin@univ-littoral.fr

and coupling parameter g . We study this problem as
a one-parameter family for arbitrary fixed ampli-

< < < <tudes N and S of the angular momenta and focus
< < < < Ž .on the case N ) S . Our parameterization of 1 is

such that the region of classically admissible ener-
w xgies remains the same for all g in the interval 0,1 .

Ž . ŽWe note that the Hamiltonian 1 or slight modifica-
.tions of it serves as an effective quantum operator in

many fundamental physical applications. We return
briefly to this in Section 6.

A concise simultaneous presentation of quantum
Ž .and classical problems with Hamiltonian 1 , each

with its own traditional notation, requires certain
compromise and intuition based on the context. So in
this note we do not use different notation for quan-
tum and classical operators, neither do we distin-
guish functions and their values. We will denote the
quantum numbers of angular momenta as N and S.
These numbers take integer or half-integer values,

< < < <while classical amplitudes N and S of the momenta
( (equal N Nq1 and S Sq1 , respectively. SuchŽ . Ž .

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00229-7
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definition improves the quantum classical correspon-
dence at low quantum numbers; it becomes unimpor-
tant in the classical limit of large S and N.

The symmetry of our problem is largely responsi-
ble for the qualitative phenomena we observe and
thus is of primary importance in the analysis. The

Ž .Hamiltonian 1 is invariant with respect to rotations
Žaround axis z simultaneous rotations around axes

.N and S in the N and S spaces which form thez z
Ž .group SO 2 . The corresponding integral of motion,

J sN qS , is the projection of the total angularz z z

momentum J on axis z. There is also an additional
� 4finite symmetry group Z s I,T whose nontrivial2 Õ

operation T sT(s is a product of the momentumÕ Õ

Ž . Ž . Žreversal T : N,S ™ yN,yS which can be re-
.garded as ‘‘time reversal’’ and the spatial reflection

in any of the vertical planes that contain axis z. An
Ž . Žexample of the Z action is N , N , N ™ N ,y2 x y z x

.N , N , a combination of T and the reflection in they z
Ž .xz plane. The complete symmetry group GsSO 2

Ž .nZ is an extension of SO 2 and is exactly the2

same as the symmetry group of the hydrogen atom in
w xparallel electric and magnetic fields 4 .

1.2. Outline of the analysis

Our main idea is to compare global features of the
one-parameter family of completely quantum prob-

Ž . Žlems with Hamiltonian 1 where both angular mo-
.menta are quantum operators , to the features of the

corresponding family in the ‘‘semi-quantum’’ ap-
Žproach where one angular momentum, such as

‘‘spin’’ S, is a quantum operator while N is a
.3-vector of classical dynamical variables , and also

to the features of the family of completely classical
Žproblems where both N and S represent classical

.variables . We follow the general scheme of compar-
w xative qualitative quantum-classical analysis 4–6

where structures in the quantum spectrum, such as
multiplets of quasi-degenerate levels 2, are associ-

2 w xIn 3 multiplets are considered for different values of the
dynamical parameter N and fixed S and g . In atomic and molecu-
lar physics the same multiplet at various N is said to form a
branch, and hence redistribution of levels occurs between different
branches. This approach is entirely analogous to varying the
external parameter g , but is less convenient in the analysis of the
classical problem.

ated with topology and symmetry properties of the
corresponding classical dynamical system.

Ž .Our quantum study Section 2 focuses on the
well known qualitative phenomenon of the energy
level redistribution between the multiplets. In our
example, the number of levels in the multiplets
changes when the value of g varies from 0 to 1 and
a transition from a spectrum of a problem with
uncoupled momenta to that characteristic for a prob-
lem with coupled momenta occurs. As in the earlier

w xpaper 3 , we relate this redistribution phenomenon
to conical intersections of classical energy surfaces
which replace the multiplets in the semi-quantum

Ž .approach Section 3 . For our choice of g this
intersection, or ‘‘diabolic point’’ occurs when gs
1r2 and the redistribution takes place when the
values of g are close to 1r2.

The main contribution of this paper may be found
in Section 4 where we show that for all values of

w xparameter g in an open sub-interval II of 0,1
containing 1r2 the classical problem has mon-
odromy. Furthermore, we find that in the limit
< < < <S rN ™0 the monodromy interval II shrinks to the
point gs1r2. Thus the three phenomena are intrin-
sically related. In Section 5 we demonstrate that
quantum implications of monodromy in our example

w xare identical to those found in other systems 7–9 .

2. Quantum description

Ž .Quantum problems similar to 1 can be found in
w xmany textbooks 10 . For arbitrary quantum numbers

Ž .Ž .S and N the space of 2 Nq1 2Sq1 wavefunc-
tions factors into a sum of subspaces of functions

Žwith given quantum number J . For SFN thez
.maximal dimension of each summand is 2Sq1.

Ž .The eigenvalues of the Hamiltonian 1 are obtained
by matrix diagonalization. The quantum number Jz

does not characterize the multiplet structure of the
Ž .quantum spectrum of 1 because multiplets consist

of states with different J . This structure can bez

easily understood near the two limits gs0 and
Ž .gs1 using appropriate good approximate quantum

numbers.
When g is close to 0 we use the eigenvalues of Sz

and N as good quantum numbers. S characterizesz z

the multiplet structure. There are 2Sq1 multiplets



ˆ ( )D.A. SadoÕskiı, B.I. ZhilinskiırPhysics Letters A 256 1999 235–244´ ´ 237

or quasi-degenerate groups of levels with 2 Nq1
Ž .levels in each group see footnote 2 . Within each

such multiplet the levels have the same value of Sz

and are distinguished by the value of N . The energyz

of each multiplet depends linearly on S . The firstz

order splitting of levels within multiplets depends
linearly on N . We say that N describes the internalz z

structure of multiplets. When g is close to 1 we use
Ž .a different pair of good quantum numbers J, J .z

Here JsNqS is the total angular momentum and
J is the projection of J on the z-axis. In this limit Jz

describes the multiplet structure. For NGS, there
are 2Sq1 quasi-degenerate multiplets labeled by
JsNqS, NqSy1, . . . , NyS with energy approx-

2 Ž .imately increasing as J sJ Jq1 . Within each
multiplet, levels with the same J are distinguished
by J so that the first order splitting is a linearz

w xfunction of J 10 .z

Transformation of the eigenfunctions of the
Ž .Hamiltonian 1 from the limit gs0 to the limit

gs1 is a well known transformation from the un-
coupled to coupled basis for two angular momenta,
< : < :NN SS ™ NSJJ . When NGS, the number ofz z z

multiplets in the two limits is the same but the
number of levels within each multiplet is different.
Consequently, a number of levels is redistributed

Ž .among the multiplets see footnote 2 at intermediate
values of the control parameter g . The redistribution
phenomenon is illustrated in Fig. 1 on the example
of Ss1r2, 1, 3r2 and Ns4. It is most clearly

w x Žseen for the case Ss1r2 analyzed earlier in 3 see
.also footnote 2 .

3. Semi-quantum description and diabolic points

The ‘‘semi-quantum’’ approach is based on the
Židea that different multiplets or branches see foot-

.note 2 with sufficiently many quantum levels can be
Ž .considered as individual interacting quantum states

whose internal structure can be analyzed using a
classical Hamiltonian. In particular, such approach
has been applied to the description of rotation-vibra-

w xtion energy levels, see references cited in 5,6 .
In our case, if S<N the ‘‘spin’’ S remains a

quantum operator, while N becomes a classical vec-
tor of angular momentum. Calculation of energies is
straightforward as soon as we realize that the semi-

Ž .quantum Hamiltonian 1 is a linear combination of
quantum operators S , S , S whose coefficients arex y z

Ž .functions of classical variables N , N , N and pa-x y z
< < < < Ž .rameters g , N , and S . We rotate S ,S ,S so thatx y z

Ž .X X Xin the new frame S ,S ,S our Hamiltonian de-x y z

pends only on S X , the projection of S on the newz

axis zX. The energy

XS Nz z
E s 1q2g gy1 1y 2Ž . Ž .XS (z ž /< < < <S N

Ž .of the 2Sq1 multiplets branches is labeled by
Ž Ž . w x.XS syS,ySq1, . . . ,Sy1,S cf. Eq. 5 of 3 .z

Each of these multiplets is now regarded as a classi-
Ž .cal dynamical system with Hamiltonian 2 and dy-

Ž .namical variables N , N , N in an Euclidean ambi-x y z

ent space R . The phase space is a 2-sphere defined3
< <in this R as a level set of N .3

Ž . Ž . Ž . Ž .Fig. 1. Quantum energy spectrum solid lines for two-level Ss1r2 , three-level Ss1 , and four-level Ss3r2 problems with
Ž . Ž .Hamiltonian 1 and Ns4. Extrema of corresponding semi-quantum energies 2 are shown by dashed lines.
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Ž .The Hamiltonians 2 can themselves be repre-
sented as deformed spheres in the same space R3

and are often called energy surfaces. These surfaces
< <have a maximum at N s N and a minimum atz

< < Ž .N syN for all values of g in the interval 0,1z

except gs1r2 where they have a singularity at
< <N syN . At this ‘‘diabolic’’ point all energy sur-z

faces have the same energy and form one many-
sheeted surface. They do not represent 2Sq1 indi-
vidual multiplets but rather reflect the fact that a
certain number of levels is redistributed among the
multiplets. Such dynamical interpretation of the en-

w x Žergy level redistribution was proposed in 3 see
.also footnote 2 based on the example of Ss1r2

Ž .Fig. 1, left . The universal character of this phe-
nomenon and the relation between the type of singu-
larity and the number of levels transferred was sub-

w xsequently studied in 11,12 .
The strikingly clear correspondence of the redis-

Žtribution and the diabolic point in the two state two
.surface case with Ss1r2 suggests that a full clas-

sical analysis of these phenomena should be con-
ducted in the limit where N and S are both large and
< < < <S rN ™0. Note, that in this classical limit, the
disagreement between the semi-quantum energy sur-

Ž .faces and quantum multiplets for gf1 Fig. 1
Žvanishes as the number of redistributed levels the

.difference in the number of levels relative to the
total number of levels in the multiplet becomes

Žnegligible. For instance, the central multiplet with
1 < < < <J;N has the largest discrepancy which is y S rN2

.when gs1 and converges to 0.

4. Classical model and monodromy

< < < <Since S and N are conserved, the phase space of
the classical problem is S =S , the product of two2 2

spheres, and the number of degrees of freedom
equals 2. Each sphere S is defined in the respective2

Ž . Ž .3-space S ,S ,S and N , N , N asx y z x y z

2 2 2 < < 2 2 2 2 < < 2S qS qS s S , N qN qN s N . 3Ž .x y z x y z

Ž .Both N and S generate each a standard so 3 alge-
bra, so that

� 4 � 4N , N s´ N , S ,S s´ S ,a b abc c a b abc c

� 4N ,S s0 ; a,b.a b

Furthermore, as already mentioned in Section 1.1,
Ž . Ž .the diagonal SO 2 symmetry of our Hamiltonian 1

results in the second integral of motion

� 4J sS qN , H , J s0. 4Ž .z z z z

The problem is, therefore, Liouville integrable.
Ž .The diagonal action of SO 2 on S =S has four2 2

fixed points with S sS sN sN s0. As a conse-x y x y

quence, we can only remove this symmetry by means
w xof singular reduction 1 . This results in a family of

reduced phase spaces P parameterized by the valueJz

< < < < < <of J , such that J F N q S . Several members inz z

this family P are singular spaces. They are ofJz

primary interest to our study. To find these spaces
we use the formal geometric approach based on the

w xorbit space construction 4,13 and the standard the-
w xory of invariants 14–16 .

4.1. Reduction of symmetries, orbit space OO

Ž .We reduce the diagonal action of SO 2 on the
four dimensional phase space S =S by mapping2 2

Ž .each orbit of the SO 2 action onto a space of orbits
OO of dimension 3. These orbits correspond to differ-
ent relative configurations of vectors S, N, and the
unit vector n which defines the direction of axis zz
Ž .the axis of symmetry . The orbits can be labeled by
the values of three algebraically independent invari-
ants

S , N , jsNPS, 5Ž .z z

that is, by the projection of vectors S and N on axis
z, and the angle between them. Alternatively, we can
use

K sS yN , J , j . 6Ž .z z z z

Ž .To label the orbits of the SO 2 action uniquely we
need an additional linearly independent invariant

ssn P SnN , 7Ž . Ž .z

which is the z-projection of the vector product of S
and N. This invariant depends algebraically on
Ž .S , N ,j , namelyz z

22 2 2 2 2s q jyN S y S yS N yN s0,Ž . Ž . Ž .z z z z

8Ž .
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Ž . Ž .Fig. 2. Space OO of all orbits of the SO 2 nZ action on S =S left sliced by planes J sy4.5,y4, . . . ,4,4.5,4.8. Singular space of2 2 2 z
< < < < Ž . Ž . Ž .orbits OO at fixed J s S y N center and the corresponding phase space P right intersected by constant level sets of Hamiltonian 1J z Jz z

< < < < Ž < < < <. Ž < < < <. Ž < < < <.with gs1r2. In all cases N s4, S s1, and axes correspond to normalized coordinates jr N S , sr N S , and K r N q S .z

To distinguish the orbits we need only specify its
sign 3.

The action of the additional Z symmetry ex-2

plained in Section 1.1 can now be reduced straight-
Žforwardly. We remark that j , S , and N or J andz z z

.K are invariants of the Z action, while s is az 2

covariant, T :s™ys . Therefore, the orbits of theÕ

Ž . Ž .SO 2 nZ action are labeled uniquely by S , N ,j .2 z z
< <For each such orbit we can find the value of s . If

< < Ž .s s0 we are dealing with a single SO 2 orbit,
Ž Ž . .either a fixed point with stabilizer SO 2 nZ , or a2
Ž .circle S ;S =S with stabilizer Z . Otherwise1 2 2 2

Ž . Ž .the SO 2 nZ orbit is a pair of SO 2 orbits, that2
Žis, a pair of circles generic orbits with trivial stabi-

.lizer .
It follows that the set OO of all orbits of the
Ž .SO 2 nZ action can be defined as an algebraic2

Ž .variety in the 3-space S , N ,j . In fact we canz z

show that OO is a closed ball in R whose boundary3

is a topological 2-sphere with four singular points at
Ž .the fixed points of the SO 2 action. For points in the

3 We can verify by a direct Grobner basis calculation that¨
Ž . Ž .K ,j ,s generate a ring of all SO 2 invariant polynomials onz

S =S which are restricted to the space P . As can be seen from2 2 Jz
Ž .Eq. 8 , all degrees of K and j , but only the first degree of sz

are required to generate such ring. Decomposition into principal
Ž . Ž .K ,j and auxiliary s invariants is known as integrity basisz
w x w x14 , homogeneous system of parameters 15 , or Hironaka decom-

w xposition 16 .

Ž .boundary we have ss0. Eq. 8 with ss0 defines
a surface in R . In the normalized variables3

< < < <y1FS rS F1, y1FN rN F1,z z

< < < <y1Fjr N S F1,Ž .
< < < <this surface remains the same for any N and S , see

Fig. 2, left. Specifically, this surface is a tetrahedron
whose edges are rounded except at the vertices A,
B, C, and D which are singular points corresponding

Ž .to the fixed points critical orbits of the diagonal
Ž . Ž .SO 2 action, that is, to the equilibria of 1 . The

position and the corresponding value of the Hamilto-
Ž .nian 1 at the vertices is given in Table 1. The lines

connecting the vertices remain on the surface. The
Ž .space of SO 2 nZ orbits OO is all points on and2

inside the bounding surface.

4.2. Fully reduced space OO and reduced phaseJz

space PJz

Dynamically we are interested in the sets of orbits
Ž .of the SO 2 nZ action with the same value of the2

integral of motion J . These are a family of planarz

slices OO of the orbit space OO illustrated in Fig. 2,Jz

left. We call them fully reduced spaces. For maxi-
Ž < < < <.mum and minimum values of J s" N q S thez

Ž .space OO is a point A and B in Fig. 2 , forJz

Ž < < < <.J s" N y S it is a disk with one singular pointz
Ž .on the boundary either C or D . In the special case

< < < <N s S , the space OO at J s0 has two singularJ zz

< < < <points, and to avoid this case we will assume N ) S
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Table 1
Ž .Critical orbits of the SO 2 n Z action on the phase space2

S =S2 2

Orbit N S j Energy J Kz z z z

< < < < < < < < < < < < < < < <A N S S N 1 N q S y N q S
< < < < < < < < < < < < < < < <B y N y S S N 2g y1 y N y S N y S
< < < < < < < < < < < < < < < <C N y S y S N y1 N y S y N y S
< < < < < < < < < < < < < < < <D y N S y S N 1y2g y N q S N q S

for the rest of the paper. For all other regular values
of J the space OO is a smooth 2-disk.z Jz

< < < <For our choice of N ) S and 0-g-1 the
< < < <singular space OO with J s S y N becomes cru-J zz

cial to the analysis. An example of such singular
space is shown in Fig. 2, center. The most important
characteristics of this space is the slope of the two

Ž .lines tangent to its boundary ss0 at the singular
Ž .point D dashed lines in Fig. 2 . The slope of these

lines is given by
21 ' '< < < <tana sy N " S . 9Ž .Ž .1,2 2

ŽIn the normalized coordinates of Fig. 2, center, the
< < < <N q S .slope is tana . It can be seen that in the limit< < < <N S

< < < <S rN ™0 our special singular space degenerates to
1 < <a line with tanasy N . The same conclusion can2

be obtained using intersections of the full orbit space
Ž .OO Fig. 2, left and planes representing constant level

< < < <sets of H and J . In the limit S rN ™0 thesez
Ž Ž . .planes are parallel to the plane j ,S s K qJ r2z z z

< <and the singular space with N sJ syN is thez z

straight line BD, which is formed when the plane
< < 2N rN sy1 is tangent to the bounding surface sz
Žs0. Indeed, the slope of the two tangent lines in

< <S dj dK z 2 .this representation is s tana™y1 .< < < < < <N S dK dS Nz z

The reduced phase space P is the set of allJz

Ž .orbits of the diagonal SO 2 action having the same
value of J . Therefore, the fully reduced space OO isz Jz

the orbit space P rZ . A point in the boundary ofJ 2z

Ž .OO ss0 lifts to a point in P , while a point inJ Jz z

Ž .the interior s/0 corresponds to two points on P .Jz

This suggests that topologically P is a 2-sphere.Jz

Indeed, we can see that the two factors in the last
Ž .term in the left hand side of Eq. 8 are always

positive. This equation defines P as a smoothJz

2-sphere in the space of dynamical variables
Ž .j ,s , K for all regular values of J . Otherwise Pz z Jz

is a sphere with one singular point shown in Fig. 2,

right, or a point. To complete our singular reduction
Ž .we note that K ,s ,j generate a Poisson algebraz

which restricts naturally to a Poisson algebra on P ,Jz

Ž .where the expression in the left hand side of Eq. 8
is a Casimir function.

4.3. LeÕel sets of H, energy-momentum map EE MM

The fully reduced space OO is the most naturalJz

tool for the qualitative analysis of the Hamiltonian
Ž .1 , which is itself a function of dynamical variables

Ž .j , K and J —all invariants of the SO 2 nZz z 2
< < < <action—and parameters g , N and S . Of course, for

the reduced Hamiltonian

1yg gŽ .
HH j , K s K qJ q j , 10Ž . Ž . Ž .J z z zz < < < < < <2 S N S

the fixed value of J is also a parameter. The levelz
Ž .sets of 10 are straight lines whose intersection with

OO is the image of dynamically invariant subsetsJz

M of S =S with fixed J and H. Certain levelJ 2 2 zz

sets of H can intersect OO at a single point which isJz

one of the critical orbits A, B, C, or D. Such sets
correspond to equilibrium points. Three other quali-
tatively different possibilities are illustrated in Fig. 2,

Ž .center. They are i a point with ss0 where the
Ž .level set is tangent to the boundary of OO ; ii aJz

regular interval closed by two points with ss0; and
Ž .iii an interval whose boundary contains a critical

Ž < < < < .point point D if N ) S and 0FgF1 . The level
sets of the first kind correspond to the maximum and
minimum energy H at given J , i.e., to the relatiÕez

Ž .equilibria of 1 . The regular level sets of HHJz

correspond to intermediate energies. The level set of
the third kind exists only when

< < < <N N
FgF ,' '< < < < < < < < < < < < < < < <2 N q S q2 N S 2 N q S y2 N S

11Ž .
that is, when the slope of the constant level sets of

Ž .HH lies within the interval defined by Eq. 9 . In theJz

< < < <limit S rN ™0, this interval shrinks towards one
point gs1r2.

To understand how different invariant subspaces
M ‘‘fit together’’ we consider the followingJz

energy-momentum map

EE MM :S =S ™R : p™ H p , J p . 12Ž . Ž . Ž .Ž .g 2 2 2 g z
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Ž . < < < <Fig. 3. Range of the energy momentum map EE MM for Hamiltonian 1 with different values of parameter g and N rS s4.

Each value of EE MM, a point in the plane R , corre-2

sponds to the set of all points p in the initial phase
Ž .space S =S where energy H p and momentum2 2

Ž . Ž .J p have given values h, j . In other words, thez

dynamically invariant set

M :S =S sEE MMy1 h , jŽ .J 2 2 gz

is a fiber of EE MM. Level sets of HH on OO map toJ Jz z

points in the range of EE MM shown for different
parameters g as a shaded area in Fig. 3. Values

Ž . Ž . Ž . Ž .EE MM A , EE MM B , EE MM C , EE MM D , and points in
the boundary of the range of EE MM are critical values

Ž w x.of EE MM cf. Chap. I.2 and IV.3 of 1 . All other
points are regular values. In the limit gs0 and
gs1 the range of EE MM is a parallelogram and a
trapezoid with slightly curved lateral sides, respec-
tively, whose vertices correspond to the four equilib-
ria listed in Table 1. As the value of g changes from

Ž . Ž .0 to 1, the points EE MM D and EE MM C move. When
Ž . Ž .g lies in the interval 11 , the point EE MM D be-

comes an isolated critical Õalue of EE MM . This sug-g

gests that in this interval of parameter values the
problem has monodromy.

4.4. Reconstruction of the leÕel sets of H, mon-
odromy

To understand monodromy we find the topology
of all fibers of EE MM, that is, we reconstruct the
invariant manifolds M . To this end we follow aJz

combination of the energy-momentum and reduction
Ž .maps. From a point h, j in the range of EE MM we gog

to the level set of HH sh on OO with J s j and onJ J zz z

P . We then lift this level set to the initial spaceJz

Ž w xS =S . By the Arnol’d-Liouville theorem see 1 ,2 2
. Ž .notes on p. 408 , each regular value h, j of EE MM

lifts to a 2-torus T in the initial phase space S =S .2 2 2

Indeed, a regular value of EE MM lifts to a regular
closed interval on OO , which in turn becomes aJz

Ž .regular circle S on P see Fig. 2, right . This1 Jz

circle is contractible to a regular point in P , andJz

thus is the base of a trivial bundle T sS =S in2 1 1
Ž .S =S . We also find that the critical values EE MM A ,2 2

Ž . Ž .EE MM B , EE MM C correspond to equilibrium points on
Ž .S =S . The same happens to EE MM D when g lies2 2

Ž .outside the interval 11 . Other points in the bound-
Žary of the range of EE MM maximum and minimum

. Ženergy at given J lift to points on OO and P Zz J J 2z z

.symmetric relative equilibria with ss0 and then to
periodic orbits on S =S .2 2

Ž . ŽWhen EE MM D is an isolated critical value as in
. Ž .Fig. 3, center the fiber of EE MM over EE MM D is ag

pinched torus, that is, a homoclinic connection of
stable and unstable manifolds of D. To see this we
reconstruct the corresponding level set on the singu-

Ž .lar space P Fig. 2, right . This set is a topolog-<S <y <N <

ical circle consisting of an open interval CC of regular
points and a singular point p. The interval CC lifts to
a cylinder CC=S ;S =S , while p goes to point1 2 2

D. Thus each end of the cylinder is pinched to a
point and the two points are identified. It is a theo-
rem that existence of such isolated pinched torus
implies that the energy-momentum map has mon-

w xodromy 17 .

5. Quantum monodromy

w xIn the presence of monodromy 2,1 , the 2-torus
bundle over a circle S in the open domain of regular1

values of the energy-momentum map EE MM, which
Ž . Žloops around the isolated critical value EE MM D Fig.

. y1Ž .4 , is non-trivial, that is, EE MM S is not S =T .1 1 2

As a consequence, there is no unique way to label all
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Fig. 4. Quantum energy levels for Ns16,Ss4 and gs1r2 plotted in the range of the corresponding classical energy-momentum map
Ž .EE MM. The value EE MM D corresponding to the pinched torus lies in the center of the white disk.

invariant tori surrounding the pinched torus, that is,
no action-angle variables can be introduced in the

w xneighborhood of D. This fact is used in 7–9 to
manifest quantum monodromy.

Following the same approach for the Hamiltonian
Ž .1 , we superimpose the range of EE MM and the
2D-lattice of points representing the energy and mo-
mentum of quantum levels, that is, the values of EE MM

on the EBK tori. We then vary the value of parame-
ter g and consider qualitative changes of the lattice.
It is clear that in the two limits the lattices are
regular, their points lie on 2Sq1 horizontal lines of
constant energy, so that there are 2 Nq1 points per
line when gs0 and a varying number when gs1
Žimagine lattices on the leftmost and rightmost plots

.in Fig. 3 . As long as g stays outside the mon-
Ž .odromy interval II in 11 , lattices can be obtained

by a smooth deformation of the corresponding limit
Žlattices consider lattices for the second left and right

.plots in Fig. 3 . The qualitative change occurs when
Ž .g enters II in 11 . In this case the lattice has a

point defect located at the value of EE MM on the
pinched torus. Fig. 4 shows such lattice for quantum

Ž < < < <numbers Ns16, Ss4 such that the ratio N rS is
.close to the one in Fig. 3 and parameter gs1r2.

As we can see in Fig. 4, quantum energy levels
within an open disk RR in the regular domain of EE MM

can be ordered using a set of integer quantum num-
Ž .bers i, j , the values of the two action integrals on

the corresponding EBK tori. In other words, quan-
tum states with the values of energy H and momen-

Ž .tum J within RR i.e., locally form a regular latticez
Ž . Ž . Ž .on RR. Four quantum states i, j , i, jq1 , iq1, j ,

Ž .iq1, jq1 , define vertices of an elementary cell of
this lattice. Moving such cell around within RR we
always come back to the same cell. If, however, we
quit RR and move our cell along a path around the

Ž .isolated critical value EE MM D as shown in Fig. 4,
right, by a series of shaded cells which correspond to
the closed path in Fig. 4, left, we come back with a
different elementary cell which is related to the
initial cell by a unimodular transformation over inte-

Žgers. In Fig. 4, right, we start with a ‘‘parallelo-
.gram’’ and come back with a ‘‘rhombus’’. It fol-

lows that in the case with monodromy no single set
of quantum numbers or single valued action vari-
ables can be defined globally over the whole range
of EE MM.

6. Discussion

w xFollowing its discovery 2 monodromy became a
w xwell understood property 1 commonly found in
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Hamiltonian dynamical systems. Yet it and its impli-
cations in quantum mechanics remain widely unrec-
ognized. Together with other recent studies
w x8,9,18,20 our example turns monodromy into a
basic tool of the analysis of physical systems. For the

Ž .parametric family of model integrable problems 1
monodromy exists in an open interval of the values
of the parameter and thus is a stable phenomenon. It
can further be suggested that monodromy and related
quantum phenomena will persist after deformation to
a non-integrable case.

Our example has truly numerous applications.
With variations and higher order terms the Hamilto-

Ž .nian 1 can describe spin-rotation coupling in
molecules and spin-orbit coupling in atoms in the
presence of magnetic field, rotational structure of
overtones of degenerate vibrational modes, vibra-
tional structure of quasi-degenerate electronic states
Ž .Jahn-Teller effect . If the above was not enough, it
also applies to all perturbed Kepler problems, such

Ž . Žas atoms without spin effects in fields cf.
w x.19,4,20 . In the latter case, the phase space S =S2 2

Ž . Ž .and the su 2 =su 2 algebra of two momenta NsS
Žappear as a result of Keplerian normalization n-shell

.approximation . Thus the first reduced Hamiltonian
for a hydrogen-like atom in parallel electric and

w x Ž .magnetic fields 4 has the form 1 with j represent-
ing the effect of the non-Coulombian core potential.
Our note gives the framework of the analysis of all
these problems. A more complete study should also

< < < < Žaddress specific features of cases N - S quantum
. < < < < Žproblem and N s S reduced phase space at J sz

.0 .
The key point of the present note is the relation

between monodromy in the parametric family of
classical problems and the qualitative modification
of the energy spectrum of corresponding quantum

Ž .Hamiltonians. We show that in the limit SrN™0
monodromy is related to the redistribution of energy
levels between different branches of the spectrum
Žrather than to qualitative changes in the structure of

.individual branches which occurs as the control
parameter g is varied. This opens even wider per-
spectives of generalization since redistribution of
levels can be easily observed even relatively far from
the classical limit and is a universal phenomenon not
confined to problems of two coupled angular mo-
menta. In fact redistribution will most likely occur in

any one parameter family of Hamiltonians with two
qualitatively different limits of ‘‘good’’ quantum

Žnumbers. Furthermore, the two-state model N4S
.s1r2 remains the most fundamental. Thus, the

high degeneracy of our system at large S and gs1r2
Ž .Fig. 1, right can be obviously decomposed into a
sequence of two-state intersections by an appropriate

Ž .small deformation of the Hamiltonian 1 .
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