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The further study of ambiguities among g2J° and ¢%/¢ terms in effective Hamiltonians for
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l.uply acgencraic fundamentals of tetrahedral molecules is presenea. It is shown that, in agreement
with theory, g%/° and ¢*7¢ diagonal coupling parameters cannot be considered as constants having

definite values for a given F, vibrational state, just like g2J* terms previously studied [V1. G.
Tyuterev, I, P, Champion, G. Pierre, and V. 1. Perevalov, J. Mol. Spectrosc. 105, 113-138 (1984)].
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The use of reduced Hamiltonians containing fewer (but unambiguous) parameters is suggested
and applied to the », band of '’CH,. © 1986 Academic Press, Inc.

I. INTRODUCTION

In previous papers (I, 2), it was shown that g°J*-type diagonal coupling parameters
of F, triply degenerate fundamentals of Td molecules are indeterminable from ex-
perimental data. In Refs. (2, 3), it was suggested to use a reduced effective Hamiltonian
containing five unambiguous fourth-order parameters instead of six parameters in a
conventional expansion. The separate analysis of the v, experimental data of '?CH,

(4) based on the assignments of Ref. (5) has put some light on the practical consequences

of ambiguities and on the efficiency of reduced effective Hamiltonians (3).

In the present article, we present a further study of effective Hamiltonians for triply
degenerate F, fundamentals including g%J° and ¢°J¢ terms with application to the
methane molecule. Such higher order terms are actually needed if very-high-resolution
data including high-J values are to be analyzed. As a matter of fact, the effective
Hamiltonian for the ground state is generally developed to the sixth order (6), and

even eighth order terms have been considered for the study of »; as an isolated band
{7\ Tha arant analucaec aftha 1. hand hava haan anhiavad neina affartiva Ha

Nnot
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iltonians for the dyad (v,/v,4) developed to the third or fourth order (5, 8). Although
we restrict ourselves to the study of separate F, state Hamiltonians, all the properties
and conclusions are equally valid for the F; part of dyad Hamiitonians.
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II. FIRST TWO TRANSFORMATIONS OF EFFECTIVE HAMILTONIANS
FOR F, STATES OF T4 MOLECULES

According to Ref. () there exist unitary transformations of effective Hamiltonians
which change the effective eigenbasis and the values of some parameters but keep the
operator form and eigenvalues unaltered:

ﬁcﬂ‘ _ e eiS3eiSzeiSJHetTe-i&e-iSze—iS;, . (1)

This is the reason for an ambiguity of these parameters in fitting experimental data.
Throughout this paper, we use the following simplified notation corresponding to
the formalism of Champion (9):

Sm = z SQ(K,nI‘)SSZ(K,nI‘) (2)
QKT.n

where
SAKAT) Sf,’ff’"”Fze - [(~1)K*'V£zUFz(r) X ROKADY (1)

is an irreducible vibration-rotation tensor. Similarly the parameters involved in the

effective Hamiltonian for F, fundamentals are simply designated by
{RKAD) = (UKADIF2F2, 3)

A list of allowed terms in S, generators is presented in Table III of Ref. (2).

First Transformation'
The first transformation relating to the generator
S, = §3GIQIGF) )3 4)

has been considered in Refs. (2, 3). It gives leading contributions to g>J* -type diagonal
coupling parameters ¢ *5T*41 a5 well as to some higher order g>J" parameters. These
contributions induce changes in %40 parameters which are related by PTZ equa-
tions (7, 2). Combinations W; of 45X parameters, invariant under transformations
(4), have been determined for v4 of CH, in Ref. (3).

In order to avoid the ambiguity associated with transformation (4), one can reduce
the fourth-order part of the effective Hamiltonian by fixing one of the t“%T*4) param-
eters to a given value within the interval allowed by order of magnitude requirements
according to Ref. (3).

Second Transformation

The second transformation is associated with the generator

S, = gHEFNQHEF) L )4 &)

! We follow the Amat Nielsen ordering scheme; i.e., we assume that ¢, p ~ 1 and J, ~ A™'. In the tensor
notation of Ref. (9), it means that

VI ~ and RUED) ~ \~®

where A ~ (Kj1 /w) is a small Born-Oppenheimer parameter.
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The leading contribution AH to the effective Hamiltonian is due to the vibrational
part of the commutator;

[iS>, H{

where

HET = (LAY I0F) (6)
AH = H — H = g[S*4F, T, 4 .
VX
=23 ‘—[3 L ((ovime oy e Rasm RGP + ... (7)
'
where

&= jg@FO LEY) 8)

From the expressions of vibrational and rotational commutators presented in Ap-
pendixes 1 and 2, it follows that the commutator (7) contributes to g/° terms:

;S(K,nl") = pSEnAD) 4 Ay S(KnT) (9a)

where ¢ and 7 designate the g2J° parameters, respectively, before and after transfor-
mation (5) is achieved:
AtS(K,nI‘) = bS(K,nI‘)S4(4,F|)ll(l,Fl). (9b)

bS(K,nI‘)

The coefficients are given by

1 1
PSSOF) = 3 3 K% ;-1 OSF)” ~ (.231435
prsarn = Ly [ g 1o 6 027546
= 3 3 (Fr Fi1F) = Y.
1 10
pSGF) = 5 3 ~ 0.202860
PXLE) = () (10)

The exact values of the isoscalar factors K appearing in (10) are

1
K hody = Vs 67 - 17V2D)"2 + 3V7(9 + V21)'?] ~ 0.362589

1
K(4 sy _ _ 1 8
(Fy Fy LFY) 12]('—55 [(

The parameter s*“f can be given any value within the interval determined by the
order of magnitude requirement

7 — 17V21)2 — 3Y7(9 ~ V21)2] ~ 0.043157.

SUGF) < )8, (1)

The transformation (5) satisfying the condition (11) changes the eigenbasis {y°%}
but keeps the operator form and eigenvalues of the effective Hamiltonian unchanged.
The ordering in its expansion is not altered. The parameters > and >3 change
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essentially while >V is not affected. The contribution to 1**'¥" is relatively small
due to the relatively small value of the coefficient
@415y
K (F1 Fi 1F()-

III. BEHAVIOR OF ¢%J5-TYPE DIAGONAL COUPLING PARAMETERS

Assuming that the fourth-order part of the effective Hamiltonian is reduced by
ﬁymo 14(4 F2) to zero (l ?\ allowed nhanapc of the effective monnhacw are due to the

second transformanon (5). The correspondmg changes of g2/ 5. parameters are related
by linear equations which can be derived simply from Egs. (9):

At S(K.nFy) — dS(K,nFl)AIS(S,OFl)' (12)

The 4 constants have the following values:
dS(S,!Fx) — bS(S.lF{)/bS(S,OFI) ~ 0.1 19025

J5(3,F1) _ 15G.F0 15(5.0F )
a =0 O ~

4 = 0, (13a)

It follows from Egs. (9) and (13) that the parameters 00, (35.1F) and 53.F0
cannot be unambiguously determined from experimental data, whereas > has to
tal data

be well defined. These conclusions may b be tested b I'“z actual fits of pvppnmen ta.

This is the subject of the next section.

Behavior of q°J*-Fitted Parameters for vy of °CH,

The experimental data used in the present work are those of Ref. (¢) for which the
experimental accuracy referred to in this paper is normally 67" ~ 1-3 X 107> cm™}

In order to verify the validity of Egs. (9)—(13), we made several fits of these data
for various values of J,,,., and for different lengths of expansion of the effective Ham-
iltonian. For each fit, the parameter 1**°™ was fixed to a given value and only the
three remaining fifth-order parameters ¢3'70 (535 and 3P were adjusted. Re-
p\.auus this pchdulc for a series of ¢ 3G.0F) "a.luca, auguuy shifted from one to the
other, we made a point by point plot of the “experimental” lines which correspond
to Eqs. (12) and (13).

Let us first discuss the case with Q.. = 5 and Jya = 10. It follows from Table I
that the behavior of fitted fifth-order parameters is in qualitative agreement with Eqgs.
(12) and (13). The parameter > is practically constant when 369 varies from
—10 X 1077 to +10 X 1077 cm™". The changes of £>*!% are relatively small (less than
5 X 1077 ecm™!) as expected from Eq. (12) in view of the small value of @*'? whereas
the variation of #**1 js about 19 X 10”7 cm}. This behavior is clearly illustrated in
Fig. 1. All the points associated with fitted values belong to straight lines; i.e., %D
parameters obey linear equations of the type (12). However, the standard deviation
of o is not constant for this series of fits and has a pronounced minimum. As discussed
in the previous paper {3), this behavior of ¢ does not contradict the general propositions

af Cantinnm IT and 1anca Af t affant AF Aamittad rdar tarme unith
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FIG. 1. Behavior of the standard deviation ¢ and dependence of angles associated with fitted parameters
1360 versus 1339 for y, of ?CHy. 1 refers 10 fits with Qe = 5, Juax = 10. 11 refers to fits with €, = 6,
Jmax = 13. Th refers to Egs. (9b) and (13a).

Q > 6. As a matter of fact, unitary transformations like (1) do not change the Ham-
iltonian eigenvalues if the Hausdorff expansion is infinite or if omitted terms are
completely negligible. These requirements are not satisfied in the considered case since
some ¢J® terms give a contribution to energy levels with J = 10 of the order of 1072
cm™', significantly larger than the experimental accuracy (1-3 X 1073 cm™).2 In fact,
transformation (5) also contributes to higher order terms with @ > 6, and different
tails in the expansion of the effective Hamiltonian are neglected, depending on the
value of the s*“4f) parameter. In order to avoid the effect on the g%J° terms of the
interruption of the Hamiltonian expansion, one can introduce the g2J° terms for the
analysis, just to “protect” the considered g2J° parameters (Table II). In this case, the
behavior of fitted 3% parameters is quite similar whereas the standard deviation
o is practically constant (Fig. 1). When 1399 is shifted within the interval allowed
by order of magnitude requirements, the maximal variations of ¢ are smaller than
0.0002 cm™! which is certainly below the experimental accuracy. The same is true for

2 The contribution of g2J¢ terms can be estimated simply from the values quoted in Table II.
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the parameter #>>? supporting the above conclusion that there are no unique phys-
ically meaningful values for the parameters >0 and ¢339 for F, fundamentals of
tetrahedral molecules.

Since in both series the points in Fig. 1 belong to straight lines,> the associated
parameters ¢ 3% gbey linear equations. The slopes of the lines give “experimental”
values for the d>%" coefficients (Table I1I) which are to be compared with the theo-
retical values [Eq. (13a)]. Although these values do not coincide, they are in qualitative
agreement: all variations A>3, Ap3G0F) and Ar33F) have the same sign. 4> is
the largest coefficient, 4°¢') has the same positive sign but is noticeably smaller,
while d*" is practically negligible. The largest discrepancy in d coefficients is about
0.13 in the case with Q < 5, J < 10 and about 0.18 in the case with @ < 6, J < 13,
i.e., quite comparable with the discrepancies observed in the study of fourth-order
parameters g2J* reported previously (3).

The Account of Higher Order Corrections to Equation (13a)

An agreement between theoretical and “experimental” values of coefficients
d>%"0) may be improved by account of high-order contributions in commutators of
vibration-rotation tensor operators. As is described in Appendix 3, a variation
A% induces a small transformation S, (4) in addition to the transformation S,
(5) discussed in the previous sections. The transformation S| contributes to the g2J°
terms via commutators with the g2J%-type operators. These contributions do not alter
relation (12), but result in the corrections in values of coefficients °%"™. When the
parameter %42 is fixed, one has

41 5 (
d*C = {Kiz, 1y ipa /K (R Foor} + 18K 2y i 22D (V6 (Fy Fropgt HFD)
235
- 14K EFz B 1F)1)f 2 3\3K 2:"1 S ()517)1)1 H(LED)
& = (V10/BVIIKG: Fiary)} + 282D /BVS5K R, 1 o2yt '0-0)
+ 1412(2,F2)/(QV§KE;] 11:1 ()-"F)l){l(l,Fx))
AP = —aVer@F/(SVIIK(, £ opgt ") + 6V612CB I(SVITK S, b, oyt 1049),
(13b)
The terms in braces coincide with the leading contributions given by Eq. (13a). The
numerical values of the coefficients calculated using Eqs. (13b) are presented in the
last column of Table III.
IV. THIRD TRANSFORMATION-SIXTH-ORDER 4%/ TERMS

The generator of the third transformation is the sum of three terms
83 = 83+ Sz + Sz (14)

3 Since only the slopes of the lines can be compared to the associated theoretical values, in Fig. 1, we have
shifted the values of the 1*%2) parameters by an appropriate quantity A" in such a manner that the
corresponding lines have a common point of intersection, all angles being kept unaltered.
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TABLE III

Values of ¢°®"™ Constants Deduced from the Fits of Experimental », Energy Levels of 2CH,

Extended
n<s5 , J< 10 n<e6 ,J <13 Theoretical.Eq.(13.a) Theoretical.Eq(13.b)
5(5,1F))
q 0.2495(17) 0.3032(31) 0.119... 0.171...
5(3,F,)
d 0.9533(22) 1.0647(84) 0.876... 0.899...
5(1,F))
q 0.0159(30) 0.0498(22) o. 0.036...
where

Sie = SS(S,E)SS(S»E) = SS(S’E)(H)V{,'}FZ(E) X RS(S,E))(An)

S3b = s5(5,Fz)SS(5,Fz) = SS(S,Fz)((Jr)VvF’%Fz(Fz) X R5(5,Fz))(A1)

Ss. = §IGFIGSG.R) = s5(3’F2)((+)V£f,F2(F2) X R5(3’F2))(A‘). (15)

The leading contributions arise from the vibrational part of the commutator
[iSs, H{"]
where H$" is given by Eq. (6). According to Refs. (1, 2), we have

Ir]

{[VE%FZ(E), Vf";}FZ(Fl)](_r) X [RS(S,E) Rl(l.Fl)](f)}(Al) + ...
6 y 5 bl

. &3a
(1S3, H =5 2
r
[iSsp, HST} = % Z% \/[—IT] ([VEaFaED) V ERPAFDIID) 5 [RSGD, RIGADYAD ..
T

[iS3c, Hel“] = ‘%3” E % \/ﬁ{ [V%Fz(Fz)’ VUF,%,FZ(F')](_F) X [R5(3’F2), Rl(l,Fl)]g)}(Al) + e,
r

(16)

All commutators and anticommutators involved in Eq. (16) are presented in the Ap-
pendixes. From their expressions it follows that the most important contributions
from transformation (14) occur for g>J¢ terms:

AH® = HT — H = [i(S3, + Sy + Ssc), HMy + - - -

= (ILFD ST b]@(K,nI‘)sszg’(g(,nI‘)Fze +oee (17)
Jj=a,b,c K,;n T#4,

where s3; (j = a, b, ¢) designate, respectively, s>, s3F2 and 5332, The values of
the coefficients 555" are given in Table IV. If the parameters s> and s** of
the first and second transformations are fixed in such a way that t*® = (0 and
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TABLE IV

Coefficients b#&" (with j = q, b, or ¢) Determining the Changes Induced in ¢*J° Parameters
by the Third Transformation

a b c
6(2,E)
J2
b, 0 0 - 52 =~ -0.202031
6(2,F )
{2
b, 2 ) o X2 . g.202001
J 7
6(4,E)
J 70 2
-2 ., 2 .
b, o 5 253533 52 = 0.308607
6(4,F )
2 1 35 1 3
b, -7 J3% = - o.3m0%00 0 7 13 ~o0.231es5
8(6,E}
1 (10
b 1138+ o.183494
3 ° 3 N33 1 0
6(6,0F, ) 5 1 &) (5 1 6)
3 13
b 2. 1—6 X * -0.487735 ; 5 K = 0.142999 o
F
(E P OF,) (P, F, OF,)
6(6,1F_) (5 1 &) (s 1 6)
2 13 13
b, -d= « * 0.067370 ; SOk ~ 0.210633 0
(E P IF)) (F, F, 1F,)

3G9F) = then the changes of g2J® terms induced by a variation of the eigenbasis
of H°f due to the third transformation are the following;

;6(K,nl‘) - t6(K,nI‘) 4 HLFY % ( z b}S(K,nI‘)Saj) (18)
j=abe
where I' # A4,.
In order to find out the relations among allowed changes of ¢2J¢ parameters, it is
useful to rewrite Eq. (18) in a detailed form by taking into account vanishing values
for the b coefficients (Table IV):

Até(Z,E) =t I(I,Fl)[bg(Z,E)sac]

Al6(2f2) = tl(l.Fl)[bg(Z,Fz)sk] (19)
At6(4‘E) - tl(l,Fl)[bg(4,E)s3b + bg(4,E)s3c]
At6(4’F2) = tl(l,F:)[bg(4,Fz)s3a + bc6(4’F2)53c] (20)

At6(6,£) — tl(l,F;)[bg(G,E)s3b]

At6(6’0F2) = ll(l,F;)[bg(s,OFz)s 0+ bg(6,0F2)S3b }

Al6(6,le) _- tl(l’Fl)[bg(6'lF2)s3q + bg(s‘lFZ)S‘_),b]. (21)
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It is clear that the variations of the two second-rank parameters [Eq. (19)] are directly
connected but are independent of those of the sixth-rank parameters [Eq. (21)]. Among
these three sixth-rank parameters, there are only 2 degrees of freedom corresponding
to the two parameters s3, and s3;. The variations of the fourth-rank parameters [Eq.
(20)] are related with those of both second-rank and sixth-rank parameters.

Since there are three parameters in the generator S;, three g2J° parameters can be
given arbitrarily any value subject to order of magnitude requirements. We shall choose
the variations At%>E) At96:5) and Ar®6.0F) a5 arbitrary ones because in this case the
associated equations can be solved in the most simple way to give

S3c = [ll(]’Fl)bg(z’E)]_lAIG(z'E)

S3p = [tl(]’Fl)bg(6’E)]_1At6(6’E)

S3a = [tl(l,Fl)b2(6,0F2)]—l[At6(6,0F2) _ (b?,(G'OFZ)/bg(G’E))At6(6'5)]. (22)

The variations of the remaining parameters can then be expressed as functions of
the variations of the above-selected free parameters:

At6(2,F2) = dgE%Fz)AtG(Z,E)

At6(4,E) — dgf}’?E)AtG(Z’E) + dng’E)AIG((”E)

A[6(4’F2) = dngIFZ)At“Z’E) + dgfg’FZ)Atﬁw’E) + dgfgszz)AtﬂQOFz)
At6(6’1F2) - dgf%lFZ)At(’(ﬁ’E) + dgfg):!fZ)A[“G’OFZ) (23)

where the d coefficients have the following values:

ey -\ [T a2

21 21 Ko Fioe
d§¢P =-\ /7  d§i¢P=- \/: —B20) . —0.607651
1 22 Kz rromn

11-13 516 K(%II:':SF) 157;'061«")
'™ =\ {Kfm, by — — A D ’)} ~ 1.25555
K& rom

1 /105
dS4E) = m = (Kg“l,l 06F)2))_l ~ (0.779726

A8 = KG b S2y/K S by ok ~ —0.138128. (24)

Equations (23)-(24) can be used to relate the usual expansion of the effective Ham-
iltonian with a reduced effective Hamiltonian as described in the next section.
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V. REDUCED HAMILTONIAN FOR F, FUNDAMENTALS OF Td MOLECULES
UP TO THE SIXTH ORDER

In order to avoid the ambiguity associated with possible changes of the effective
eigenbasis without changing the form and the eigenvalues of the effective Hamiltonian,
one can simply remove free parameters. This procedure leads to a reduced effective
Hamiltonian containing fewer adjustable parameters. The list of removable terms up
to the sixth order is presented below:

(i) First, second, and third orders (¢%J, g*J%, and ¢%J* terms): All terms are not
removable.

(i) Fourth order (¢g*J* terms): Any one of the four parameters ¢
t44E) or 1447 can be removed. A detailed discussion about this reduction is presented
in Ref. (3).

(iii) Fifth order (g%J° terms): Any one of the two parameters % or 33V cap
be removed. Fits using an unreduced fifth-order Hamiltonian and using two versions
of reduced Hamiltonians (to the same order) are presented in Table V. The quality
of the fit is not affected by reduction, although fewer parameters are adjusted. The
parameter 1>V is not allowed to be removed since 5" = 0. The elimination of
the parameter 1>*'¥V) requires a large transformation (5) which does not satisfy the

42,FE) t4(2,F2)
s s

TABLE V

Reduction of the Fifth-Order Part of the Effective Hamiltonian

1(1, F1) 10.25655(39) 10.25632(37) 10.25663(39)

2(0, Al) -6.4043(37)  -6.4037(37)  —6,4024(36) 2 -1
2(2, E )  8.4529(46) 8.4507(45)  8.4545(47) x 10 ‘cm
2(2, F2) -10.174(5) -10.173(5)  -10.176(6)

3(1, F1)  2.2600(45) 2.2562(40)  2.2633(42) % x 10 3eg™t
3(3, F1)  1.7970(34) 1.8010(24)  1.7914(24)

4(0, A1)  7.46(4S) 7.20(44) 7.22(46) )

4(4, Al)  10.773(419)  11.487(62)  9.385(75)

a2, E )  21.56(43) 21.86(36) 20.89(39) x 10 %cm !
4(2, F2)  8.82(50) 8.42(42) 9.49(45)

a(e, E ) 13.74(37) 13.70(386) 13.63(38) '

4(a, F2) O.0* 0.0% 0.0%

5(1, F1)  3.97(16) 3.86(15) 4.04(16)

5(3, F1)  3.20(98) 4.89(7) o.o* -7 -1
5(5,0F1) ~1.49(86) 0.0* -4,38(6) x 10 ‘cm
5(5,1F1) —-4.46(29) -4.04(11) -5.34(12)

6(0, Al)  8.4(2) 8.6(2) 9.3(2)

6(2, E )  2.1(21) 5.6(10) -4.1(10)

6(2, F2)  6.9(12) 6.1(12) 7.6(12)

6(4, Al)  8.59(22) 8.41(20) 8.88(21) e -1
6(4, E ) -4.5(17) ~4.7(16) -5.7(17) x 10

6(4, F2) -8.1¢14) -9.0(13) -6.9(14)

6(6, Al) -1.233(82) -1.169(56)  -1.529(59)

6(6, E )  14.1(25) 9.9(2) 22.3(2)

6(6,0F2)  0.*x 0.* 0.x

6(6,1F2)  Q.*x 0.* 0.*

[ 0.0030 0.0030 0.0032
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condition (11) since 53! ~ 0,027 is accidentally small. These proposals are confirmed
by actual results of associated fits (Table VI).

(iv) Sixth order (g2/¢ terms): Three of the seven parameters {%3%), (6.7 (64.E)
8&FD (S6E) 1660F) and 461D can be removed. However, not any set of three is
admissible. For example, %> and t*®#? cannot be removed simultaneously. Simi-
larly, all sixth-rank parameters cannot be removed simultaneously.

We suggest the removal from the effective Hamiltonian of the following five terms
up to the sixth order: (442 (SOOF) (S2E) (66.E) and (569,

The resulting reduced Hamiltonian contains 22 unambiguous parameters up to the
sixth order, instead of 27 parameters in usual expansions. The parameters obtained
by fitting the v, band of '*CH, using this reduced Hamiltonian are listed in Table VII.

V1. CONCLUSION

The processing of experimental », energy levels of '*CH, performed in this paper
confirms the propositions of Refs. (, 2) in the case of higher order g>J° and ¢2J°
diagonal coupling parameters. Just like g2J* parameters (3), ¢°J° and ¢>J¢ parameters
cannot be considered altogether as constants having definite values for a given F;
vibrational state.

All the phenomenological conclusions presented in detail in Ref. (3) can be applied
to the present case. The easiest way to overcome ambiguities in effective Hamiltonians
is to reduce them by removing free parameters. Another way is to define invariant
parameters by forming appropriate linear combinations of the usual parameters. Of
course, these conclusions are equally valid for other formalisms subject to a careful
calculation of the effect of ambiguities in each particular case as itlustrated in the
Appendix of Ref. (3).

TABLE V!

Influence of the Elimination of Different g2J* Terms from a Hamiltonian on the Accuracy of Fits
(Case Qmax = 6, Jmax = 13)

5(K,nlr) Eliminated terms
All ¢
ajusted
5(5,0F;) 5(3,F;) 5(5,1Py) 5(1,Fy)
-3 -1
¢ in 10 om 3.0 3.0 3.2 5.0 6.2
N adjusted 4 3 3 3 3
Different types of d constant reduction
reduction amall not

allowed
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TABLE VI

Fitted Parameters of Unreduced and Reduced Effective Sixth-Order Hamiltonians for v, of *CH,

Unreduced

Reduced

0(0, Al)  1310.763(1) 1310.763(1)
1(1, P1) 10.25713(33) 10.25711(33)
2(0, Al) -6.4031(36) —6.4022( 36) 2 -
2(2, £ ) 8.4381(83) 8.4396(33) X 10 cm
2(2, P2) -10.169(8) -10.166(5)
3(1, P1) 2.2641(24) 2.2694(29) x 10 3!
3(3, P1) 1.7143(46) 1.8012(25)
4(0, AL) 7.26(46) 7.10( 46 )
4(4, A1) 21.38(280) 11.47(7) o
42, E ) 1.0¢118) 21.2(3) x 10 %cm
a(2, P2) 29.7(123) 8.8(42)
4«4, E) 54.1(193) 13.3(37)
a(4, P2) 28.0(133) o.*
5(1, P1) 0.95(183) 4.46(7)
5(3, PL) 21.11(500) 4.66(10) x 10~ Temt
5(5,0P1) 16.84( 492) 0.*
5(5,1P1) -—4.98(264) ~3.66(6)
6(0, Al) 9.2(2) 9.5(2)
6(2, E ) 23.1(73) 0.*
6(2, P2) 16.1(27) 11.7(6)
6(4, Al) 9.22(27) 8.95(18) 9 -1
6(4, E ) 22.7(78) 0. x 10 =
6(4, P2) 27.4(87) -4,7(7)
6(6, AL) -2.19(37) -1.00(8)
6(6, E ) ~—29.5(116) 11.6(S)
6(6,0P2) 33.2(75) o.*
6(6,1P2) -1.84(367) 2.10(53)

o 0.0030 0.0030

N 27 22

APPENDIX 1

Using the general definition of irreducible tensor commutators
[AF‘, Brzlz = (AI‘| X Bl‘z)l‘ _ (_1)1"|+I‘2+I‘(BI‘2 X AI‘;)I"
We obtain the following expressions for the vibrational commutators in Champion’s

notation {9):

[V R Oy ERER = L oy BEaE)
g 8 V§ S
[(+)V{;{2(E)’ (—)V‘I{:?an(Fn)]I_’z = i(+)v4F,z4_Fz(F2)

[‘+)V£73F2(F2), (—)Vﬁfz(ﬂ)]l_f =

V2

i = IV EFAE)

_ i
[(+)V£gfz(Fz), ( )Vizan(Fx)]l_’z = e H’V{%‘FZ(F’).

V3
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The general expression has the form
[V, OV BT = OO 1) — (- DFIVIT] (BB )G

where
0 r =A1,E, F2

1 I'=4,, F,.

APPENDIX 2
Using the general definition of irreducible tensor anticommutators,
[Al"1 Bl"z][‘ (Al‘l X BI‘z)I‘ + ( 1)I‘|+I‘2+I‘(BI‘2 X AI‘])I‘

The leading contributions to rotational “anticommutators™ are given by

11 (4 1 5)
[R4(4’Fl)’ Rl(l,Fl)]F+1 = -2 \/; K( G ‘)RS(S‘OF‘)
11 (4 1 5) p5(5,1F 2 10 5(3,F
2{ _3—K(F1F1 lFl)R(’ D 3 3 R(’ 0

13 13 V35
=9 \/; KESE ;l oﬁF)z)R6(6,0Fz) +2 ot K& ;l 161-‘)2)R6(6’lF2) +2 o R6G.F)

3
[RIGF) RIGFI)E = _ 10 Ré6E 4 1=V V210 RO“E)
’ 11 11

_ 51 6) D, 13 (51 6) ps6,IF:
[RS(S,Fz)’ R4(1,F1)]{2 =2 \/—- KEFZ L OFz)R (6,0F2) 4 o \/; K(Fz Fi 1F2)R (6,1F2)

[R5(3,F2) R\(I,Fl)]i'z =3 \/? R6(4 ) + 6_[ R6(2 FZ)
’ 14

APPENDIX 3: HIGHER ORDER CONTRIBUTIONS TO ¢%J* AND ¢%J° TERMS

The second transformation (5) results in the contributions to g°J* terms via the
commutator of the type [V, V'].[R, R']- [see the last term in Eq. (7) of the Ref. (2)]:

Apaa) — %g sYGFNL(LFY (A31)
ArHEED = % \/z SHAFOI0LFD (A3.2)
Al4(4’E) — 2‘/9ﬁ 54(4’Fl)t1(l’Fl) (A33)

APH2F) = ApHLE) = ApH0A) = () (A3.4)
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The resulting changes in g2/*type parameters (A3.1)~(A3.4) have to be two orders
less than the associated changes Ar4KT) = (V2/7)d 46D g33F)1LF) induced by the first
transformation (4) if the condition s3¢#2 < )\ [see Refs. (2, 3)] and the condition
(11) are satisfied. Formally one could use the transformation (5) in order to eliminate
one more term from the ¢2/* part of the Hamiltonian by appropriate choice of
440 in Egs. (A3.1)-(A3.3). However, it would violate the condition (11) and results
in a deterioration of a quality of a fit [see Table VIII of Ref. (3)]. The more consistent
way is to use the procedure of the reduction which does not result in a reordering of
the Hamiltonian expansion and does not worsen its convergence as is discussed in
Refs. (2, 3) and in Section V.

The validity of Egs. (A3.1)-(A3.4) may be verified using the results of the fits of
experimental data presented in the Table I1. Let us consider two effective Hamiltonians
corresponding to any two columns of the Table II. These Hamiltonians are equivalent
since ¢ in both cases is practically the same. In order to relate them up to fifth-order
terms, one needs two unitary transformations. of the types (5) and (4). The associated
parameters s> and s**? are the solutions of the following equations:

V3 V7
A4 o IOFDULEFY | AGFILFD 4 L L = (A3.5)
2V14 312
1 11
AP = 2\ [ KB s 0N £ = constant,  (A3.6)

The transformation involving s*4" has been discussed in Section IL It follows
from Eq. (A3.5) that a variation Az’ and the requirement Az¥*? = 0 result in
auxiliary fifth-order transformation of the type (2) with the parameter

S¥ED) = —14APSOFIVIL K,y gt ') ~ A8, (A3.7)

The sixth-order contributions of the latter transformation to g*J° terms are presented
as corrections in Eqgs. (13b).

Both transformations provide fifth-order contributions to ¢g>/* terms. Associated
variations of the parameters may be written as

APUKD) = p84KI) A f5G.F1) (A3.8)
where the calculated coefficients e*“®) are the following:

4 = 4V5(V33KE 1o (A39)

e*CE = 22 /VIIK'E, ok (A3.10)

e*2F) = V2 /(VIIK G, b ofy) (A3.11)

YHEY = p404) — (A3.12)

The results of processing of experimental v4 data for '*CH, presented in Table II
are in agreement with Egs. (A3.8)-(A3.12). The values of fitted *%T) parameters
displayed in the Table II with reasonable accuracy obey linear equations of the type
(A3.8). The comparison of theoretical and “experimental” values of e*5T) coefficients
is presented in the Table VIII.
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TABLE VIII

Comparison of Theoretical Values of %™ Constants with These Deduced from the Fits
of Experimental v, Energy Levels of '*CH,

Theoretical .Eqs.(A3.9)~(A3.12) Deduced from Table II
e‘“’nz) 4.29 4.6 (3)
4(2,E)
e 2.35 3.1 (9)
4(2.1"2)
e - 2,38 - 3.3 (8)
4(4,E)
e 0 - 0.5 {10)
40,A)
e ) 0.0 (8)

Note that in Tables I and II, we examine the behavior of parameters in the wide
region which is larger than an interval allowed by order-of-magnitude considerations.
The distinction in %597 between left and right sets is Ar*C%F) = 2 X 107% cm™".
According to the Amat-Nielsen ordering scheme, one should consider Ar3%T
~ 15ED) ~ A0y ~ 1077 cm™!, otherwise the condition (11) should be violated. Within
an allowed interval restricted by two nearby sets of Table II, the variations in fitted
values of 45D parameter are not important, as should be expected from the general
scheme of the reduction (2).

RECEIVED: September 10, 1985
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