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The further study of ambiguities among q2J5 and q2J6 terms in effective Hamiltonians for 
triply degenerate fundamentals of tetrahedral molecules is presented. It is shown that, in agreement 
with theory, q2JJ and q2J6 diagonal coupling parameters cannot be considered as constants having 
definite values for a given F2 vibrational state, just like q2J4 terms previously studied [VI. G. 
Tyuterev, J. P. Champion, G. Pierre, and V. I. Perevalov, J. Mol. Spectrosc. 105,113-l 38 ( 1984)]. 
The use of reduced Hamiltonians containing fewer (but unambiguous) parameters is suggested 
and applied to the “4 band of 12CI&. o 1986 Academic p, IX. 

I. INTRODUCTION 

In previous papers (1, 2), it was shown that q2J4-type diagonal coupling parameters 
of F2 triply degenerate fundamentals of Td molecules are indeterminable from ex- 
perimental data. In Refs. (2,3), it was suggested to use a reduced effective Hamiltonian 
containing five unambiguous fourth-order parameters instead of six parameters in a 
conventional expansion. The separate analysis of the v4 experimental data of 12CH4 
(4) based on the assignments of Ref. (5) has put some light on the practical consequences 
of ambiguities and on the efficiency of reduced effective Hamiltonians (3). 

In the present article, we present a further study of effective Hamiltonians for triply 
degenerate F2 fundamentals including q2Js and q2J6 terms with application to the 
methane molecule. Such higher order terms are actually needed if very-high-resolution 
data including high-J values are to be analyzed. As a matter of fact, the effective 
Hamiltonian for the ground state is generally developed to the sixth order (6), and 
even eighth order terms have been considered for the study of v3 as an isolated band 
(7). The most recent analyses of the v4 band have been achieved using effective Ham- 
iltonians for the dyad (vz/v~) developed to the third or fourth order (5, 8). Although 
we restrict ourselves to the study of separate F2 state Hamiltonians, all the properties 
and conclusions are equally valid for the F2 part of dyad Hamiltonians. 
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II. FIRST TWO TRANSFORMATIONS OF EFFECTIVE HAMILTONIANS 
FOR F2 STATES OF Td MOLECULES 

According to Ref. (I) there exist unitary transformations of effective Hamiltonians 
which change the effective eigenbasis and the values of some parameters but keep the 
operator form and eigenvalues unaltered: 

Ijeff= . . . eiS3eiSzeiS1fpTe-iS~e-iS2e-iS3~ . . . 
(1) 

This is the reason for an ambiguity of these parameters in fitting experimental data. 
Throughout this paper, we use the following simplified notation corresponding to 

the formalism of Champion (9): 

&= c s WW)S W,r,nr) (2) 
Wz.n 

where 
S n(K,nr) e CJn(mr)i%F2 = [(-1vVF2h(r) x Rfwnr)](~I) 

u,u v,u 

is an irreducible vibration-rotation tensor. Similarly the parameters involved in the 
effective Hamiltonian for F2 fundamentals are simply designated by 

tR(K.nr) s t ;\K,nr)FzF2 (3) 

A list of allowed terms in S,,, generators is presented in Table III of Ref. (2). 

First Tran~for~~tion~ 

The first transformation relating to the generator 

s, = s3’3,E’S3(3,F2) ry ~3 (4) 

has been considered in Refs. (2,3). It gives leading contributions to g2J4--type diagonal 
coupling parameters tqKrzA1) as well as to some higher order q*J” parameters. These 
contributions induce changes in tqKr”‘) parameters which are related by PTZ equa- 
tions (I, 2). Combinations Wi of t4(Kr) parameters, invariant under transformations 
(4), have been determined for u4 of CH4 in Ref. (3). 

In order to avoid the ambiguity associated with transformation (4), one can reduce 
the fourth-order part of the effective Hamiltonian by fixing one of the tqKr’A’) param- 
eters to a given value within the interval allowed by order of magnitude requirements 
according to Ref. (3). 

Second Transformation 

The second transformation is associated with the generator 

s2 = SW,Fl)SW,Fi) ry ~4 (5) 

I We follow the Amat Nielsen ordering scheme; i.e., we assume that q, p - 1 and J, - A-‘. In the tensor 
notation of Ref. (9), it means that 

Vrrcv _ 1 
“,O and R%r) _ X-0 

where X - (Kg, /w) is a small Born-Oppenheimer parameter 
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The leading contribution AH to the effective Hamiltonian is due to the vibrational 
part of the commutator: 

[&, HPffl 
where 

H;fl = t ~(I,h~~(~,~l) 
(6) 

AH = Ejeff _ fje”f = g2[S4(4>~l)r T l(I,Fl)]v + . , . 

?(FI), (-)v$IF”F”]< x [R*4,FI), R’(l,F1)]T]A’ + * * * 
(7) 

where 
& E ~S4(4.Fk)~I(1,FI)_ 

(8) 

From the expressions of vibrational and rotational commutators presented in Ap- 
pendixes 1 and 2, it follows that the commutator (7) contributes to q2J5 terms: 

;5(0r) = t5(““r) + &5(““r) 
Pa) 

where t and ? designate the qzJ5 parameters, respectively, before and after transfor- 
mation (5) is achieved: 

A+“‘) = b5(K?Ir)S4(4,Fl)t r(l#i) (9b) 
The coefficients b5(K*nr) are given by 

1 b5(5,o~l, = _ 

3 

b%lFI) = i 
3 

1 @(%FI) = _ 

9 
N 0.202860 

bW.Fl) = 0 
(10) 

The exact values of the isoscalar factors K appearing in (10) are 

KlI, r, 02, = --& [(87 - 17\jzT)“2 + 3fi(9 + fi)“‘] N 0.362589 

g:, k, 2,) = - --& [(87 - 176) 1’2 - 3E(9 - fi)“2] N 0.043157. 

The parameter ~~~~~~~~ can be given any value within the interval determined by the 
order of magnitude requirement 

S4(4m < x8 
(11) 

The transformation (5) satisfying the condition (11) changes the eigenbasis (vff} 
but keeps the operator form and eigenvalues of the effective Hamiltonian unchanged. 
The ordering in its expansion is not altered. The parameters t5(5,0F1) and t5(311) change 
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essentially while t5(‘*F’) is not affected. The contribution to t5(5*‘F’) is relatively small 
due to the relatively small value of the coefficient 

K& x :Ffii. 

III. BEHAVIOR OF q*J’-TYPE DIAGONAL COUPLING PARAMETERS 

Equations for Fifth-Order Parameters 

Assuming that the fourth-order part of the effective Hamiltonian is reduced by 
fixing t q4J2) to zero (l-3), allowed changes of the effective eigenbasis are due to the 
second transformation (5). The corresponding changes of q2J5 parameters are related 
by linear equations which can be derived simply from Eqs. (9): 

&%““FI’ = d%nFI)At5(5,OFI). (12) 

The d constants have the following values: 

&(%iFl) = @~.I~I)/~%~,OFI) 2( 0.1 19025 

&(%FI) = b5’39tb5’59h N 0.876532 

d5(Ih) = 0. 
(134 

It follows from Eqs. (9) and ( 13) that the parameters t5(5yoF’), t5(5s’F’), and t5(3*F’) 
cannot be unambiguously determined from experimental data, whereas t 5(‘~F’) has to 
be well defined. These conclusions may be tested by actual fits of experimental data. 
This is the subject of the next section. 

Behavior of q2J5-Fitted Parameters for v4 of “CH.+ 

The experimental data used in the present work are those of Ref. (4) for which the 
experimental accuracy referred to in this paper is normally GexpeT - l-3 x 10F3 cm-‘. 

In order to verify the validity of Eqs. (9)-( 13), we made several fits of these data 
for various values of J,,,, and for different lengths of expansion of the effective Ham- 
iltonian. For each fit, the parameter t5(5*oF’) was fixed to a given value and only the 
three remaining fifth-order parameters t5(5+‘F’), t5(3,Ft), and t5(‘-F’) were adjusted. Re- 
peating this procedure for a series of t5’5,0F” valu es, slightly shifted from one to the 
other, we made a point by point plot of the “experimental” lines which correspond 
to Eqs. (12) and (13). 

Let us first discuss the case with Qmax = 5 and J,, = 10. It follows from Table I 
that the behavior of fitted fifth-order parameters is in qualitative agreement with Eqs. 
( 12) and ( 13). The parameter t 5(‘*F’) is practically constant when t 5c5*oF1) varies from 
- 10 X 1 O-’ to + 10 X 1 O-’ cm-‘. The changes oft 5(5*‘h) are relatively small (less than 
5 X 1 0P7 cm-‘) as expected from Eq. ( 12) in view of the small value of d5(5*‘F*), whereas 
the variation of t5”gf” is about 19 X 10e7 cm-‘. This behavior is clearly illustrated in 
Fig. 1. All the points associated with fitted values belong to straight lines; i.e., t5(Kr) 
parameters obey linear equations of the type (12). However, the standard deviation 
of u is not constant for this series of fits and has a pronounced minimum. As discussed 
in the previous paper (3), this behavior of c does not contradict the general propositions 
of Section II and is a consequence of the effect of omitted higher order terms with 
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FIG. 1. Behavior of the standard deviation u and dependence of angles associated with fitted parameters 
?r) versus tH5.“‘) for v4 of ‘*CH4. I refers to fits with Qmu = 5, J,,,, = 10. II refers to fits with R, = 6, 
J mu = 13. Th refers to Eqs. (9b) and (13a). 

Q 2 6. As a matter of fact, unitary transformations like (1) do not change the Ham- 
iltonian eigenvalues if the HausdorlI expansion is infinite or if omitted terms are 
completely negligible. These requirements are not satisfied in the considered case since 
some q2J6 terms give a contribution to energy levels with J = 10 of the order of lop2 
cm-‘, significantly larger than the experimental accuracy (l-3 X 10e3 cm-‘).2 In fact, 
transformation (5) also contributes to higher order terms with Q 3 6, and different 
tails in the expansion of the effective Hamiltonian are neglected, depending on the 
value of the sq4p1) parameter. In order to avoid the effect on the q2J5 terms of the 
interruption of the Hamiltonian expansion, one can introduce the q2J6 terms for the 
analysis, just to “protect” the considered q2J5 parameters (Table II). In this case, the 
behavior of fitted fSCKnF’) parameters is quite similar whereas the standard deviation 
u is practically constant (Fig. 1). When t5@*‘“) is shifted within the interval allowed 
by order of magnitude requirements, the maximal variations of u are smaller than 
0.0002 cm-’ which is certainly below the experimental accuracy. The same is true for 

* The contribution of q2J6 terms can be estimated simply from the values quoted in Table II. 
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the parameter t5(3,F’) supporting the above conclusion that there are no unique phys- 
ically meaningful values for the parameters t 5(5,0R) and t5(3,F’) for Fz fundamentals of 

tetrahedral molecules. 
Since in both series the points in Fig. 1 belong to straight lines3 the associated 

parameters t5(KK,nF’) obey linear equations. The slopes of the lines give “experimental” 
values for the d5(K,nF’) coefficients (Table III) which are to be compared with the theo- 
retical values [Eq. (13a)]. Although these values do not coincide, they are in qualitative 
agreement: all variations At5’5S’F’), At 5(5,0F’), and At5’3,F” have the same sign. d5(3,F’) is 
the largest coefficient, d 5(5,*F’) has the same positive sign but is noticeably smaller, 
while dXIJ1) is practically negligible. The largest discrepancy in d coefficients is about 
0.13inthecasewithQG5,Jc lOandaboutO.l8inthecasewithQ<6,J< 13, 
i.e., quite comparable with the discrepancies observed in the study of fourth-order 
parameters g2J4 reported previously (3). 

The Account qf Higher Order Corrections to Equation (13a) 

An agreement between theoretical and “experimental” values of coefficients 
dScKnr) may be improved by account of high-order contributions in commutators of 
vibration-rotation tensor operators. As is described in Appendix 3, a variation 
AtSCKnr) induces a small transformation S, (4) in addition to the transformation S, 
(5) discussed in the previous sections. The transformation S, contributes to the q2J5 
terms via commutators with the q2J2-type operators. These contributions do not alter 
relation ( 12), but result in the corrections in values of coefficients dScKnr). When the 
parameter t4(4,F2) is fixed, one has 

The terms in braces coincide with the leading contributions given by Eq. (13a). The 
numerical values of the coefficients calculated using Eqs. (13b) are presented in the 
last column of Table III. 

IV. THIRD TRANSFORMATION-SIXTH-ORDER q2J6 TERMS 

The generator of the third transformation is the sum of three terms 

s3 = s3a + S3b + S3r (14) 

3 Since only the slopes of the lines can be compared to the associated theoretical values, in Fig. 1, we have 
shifted the values of the txK@‘) parameters by an appropriate quantity AK” in such a manner that the 
corresponding lines have a common point of intersection, all angles being kept unaltered. 
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TABLE III 

Values of dJ(Knr) Constants Deduced from the Fits of Experimental v4 Energy Levels of j2CH4 

Extended 
"<5,J<IO il<6 ,5<13 TheoretlCal.Eq.(l3.a) Theoretical.Eq(13.b) 

d 
5(5.1F1) 

0.2495(17) 0.3032(31) 0.119... 0.171... 

d 
5(3.FL) 

0.9533(Z) 1.0647(84, 0.876... 0.899... 

d 
5(LFl) 

0.0159(30) 0.0498(X) 0. 0.036... 

where 
S,, = S5(5,E)S5w) = s5(5,E)((+)~~uXE) x R5’5,9Al 

s3b = ,5(5Fz)s5(5,~d = s5(5,F2) (+)vFfl2(F2) 
( v 

x ~5'%Fz')'h 

&, = ,5(3,~2)~5(%~2) = s5(3.F2) (+)vM2F2) 
( WJ 

x ~W2')'k' 
(1% 

The leading contributions arise from the vibrational part of the commutator 

[is3, ff?l 

where HPff is given by Eq. (6). According to Refs. (I, 2), we have 

[iS3= Heff] = g3a C > I 

2 r 

$'22@), V$F2'7$ x [R5(5,E’, Rl(l,~~)]~)}(AI) + . . . 

[iS3b, HP1 = y F f Vi(W,, F2F2(F2), v$F22'K']~' x [RXW~', Rl(I>~l)](+i?}(AI) + . . . 

[i,S3c, IIt'] = y F f m{ [V$,,2(F2), V$F2(F’)]‘r) X [R W’2), Rl(1>Fl)]~)}(AI) + . . . . 

(16) 

All commutators and anticommutators involved in Eq. ( 16) are presented in the Ap- 
pendixes. From their expressions it follows that the most important contributions 
from transformation (14) occur for q2J6 terms: 

AH”’ = eff - H”” = [i(S3a + S3, + S3C), HPff], + - - - 

= tl(l,FI) c 2 c bi6(K,nr)S3jT~~;K.nr)F2F2 + . . . 

j=a,b,c K,n WA1 
(17) 

where S3j (j = a, b, c) designate, respectively, ~~~~~~~~ s5(53F2), and s5(3*F2). The values of 
the coefficients bc(K*nr) are given in Table IV. If the parameters s3(3*F2) and sq4*F’) of 
the first and se&&d transformations are fixed in such a way that tq29F2) = 0 and 
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TABLE IV 

Coefficients bqKnr) (with j = a, b, or c) J Det ermining the Changes Induced in q256 Parameters 
by the Third Transformation 

a b c 

W2,E) 
h. 0 0 
7 

- $ 3 -0.202031 

b 
6(2,F2) 

3 0 0 $ 4 0.202031 

6(4,E) 
b 

0 
4-G 

1 -33 
re 

-0.253533 
J- 2 

zi 
IO.306607 

b 
6(4.F*) 1 

J- 

35 

1 -ii ? 
= - 0.380300 0 

1 

z 
Q 0.231455 

W6,E) 
h 0 1 
1 5 

= 0.163494 0 

6(6rOF2) A-- 13 (5 1 6) (5 1 6) 
b 
I -6 K 1 -0.467735 K 9 0.142999 0 

(E FL OF2) (F2 F1 OF2) 

6(6.1F2) -.r- 13 (5 1 6) (5 1 6) 
b. 3 ?; K a 0.067370 K z 0.210633 0 

(E FL lF2) (F2 F1 1F2) 

t5(5,0F’) = 0 then the changes of q2J6 terms induced by a variation of the eigenbasis 
of Heff due ;o the third transformation are the following: 

;6W,nr) = t6Knr) + t’W~) x ( 2 ~;WJI~‘~,) (18) 
j=a,b,c 

where r f A,. 
In order to find out the relations among allowed changes of q2J6 parameters, it is 

useful to rewrite Eq. (18) in a detailed form by taking into account vanishing values 
for the b coefficients (Table IV): 

(19) 

(20) 

(21) 
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It is clear that the variations of the two second-rank parameters [Eq. (19)] are directly 
connected but are independent of those of the sixth-rank parameters [Eq. (2 l)]. Among 
these three sixth-rank parameters, there are only 2 degrees of freedom corresponding 
to the two parameters s3= and Sag. The variations of the fourth-rank parameters [Eq. 
(20)] are related with those of both second-rank and sixth-rank parameters. 

Since there are three parameters in the generator S3, three q2J6 parameters can be 
given arbitrarily any value subject to order of magnitude requirements. We shall choose 
the variations Aht6(2PE), At6(6VE), and At6(6’oF’) as arbitrary ones because in this case the 
associated equations can be solved in the most simple way to give 

s3c = [t 
l(LFdb6W) -1&6(&E) 

c 1 
s36 = [t’(‘,F~)b8(6,E)l-‘~t6(6,E) 

s3a = P 
l(l,F1)~6(6,OFz)]-I[~~6(6,OFz) _ (b~(6,OF2)/6~(6,E))~t6(6,E)]. 

a (22) 

The variations of the remaining parameters can then be expressed as functions of 
the variations of the above-selected free parameters: 

at6(4,E) = d@E)At6(2>E) + d’@E)&6(6,E) 

at6(4,F2) = &$F2,At6(2.E' + &,($F2)At6(6.E) + d6(4F2)Afq6,0F2' 
6,022 

at6(6,1F2) = &f&F2)At6(6.E) + &$j2W&6’6.“F2) 

where the d coefficients have the following values: 

d@&) = _ N -0.60765 1 

K’s 1 6) @ 5 1 6) 

K::2 k, I% - 
(EFI IF2 (F~FIOA) 

K:; ;, 6%) 

(23) 

d;$$~’ = Kg;, $2,/K&&)2, N -0.138128. (24) 

Equations (23)-(24) can be used to relate the usual expansion of the effective Ham- 
iltonian with a reduced effective Hamiltonian as described in the next section. 
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V. REDUCED HAMILTONIAN FOR F2 FUNDAMENTALS OF Td MOLECULES 
UP TO THE SIXTH ORDER 

In order to avoid the ambiguity associated with possible changes of the effective 
eigenbasis without changing the form and the eigenvalues of the effective Hamiltonian, 
one can simply remove free parameters. This procedure leads to a reduced efictive 
Hurniltonian containing fewer adjustable parameters. The list of removable terms up 
to the sixth order is presented below: 

(i) First, second, and third orders (q2J, q2J2, and q2J3 terms): All terms are not 
removable. 

(ii) Fourth order (q2J4 terms): Any one of the four parameters t4(2,E), tq2,F2), 

t4w), or t‘w,F2) can be removed. A detailed discussion about this reduction is presented 
in Ref. (3). 

(iii) Fifth order (q2J5 terms): Any one of the two parameters t 5(5,0F’) or t5(3vF’) can 
be removed. Fits using an unreduced fifth-order Hamiltonian and using two versions 
of reduced Hamiltonians (to the same order) are presented in Table V. The quality 
of the fit is not affected by reduction, although fewer parameters are adjusted. The 
parameter t 5(‘m is not allowed to be removed since b5(1*F’) = 0. The elimination of 
the parameter t 5(5*‘A) requires a large transformation (5) which does not satisfy the 

TABLE V 

Reduction of the Fifth-Order Part of the Effective Hamiltonian 

l(1. Fl) 10.25655(39) 10.25632( 37) 10.25669(39) 

2(0. Al, 
2(2. E ) 

2(2. F2) 

311, F1) 

3(3. Fl) 

4(0. Al) 

4(4. Al) 

4(2. E ) 

4(2. F2) 

4(4. E ) 

4(4. P2) 

5(1, F1) 

5(3. Fl) 
5(5,OF1) 

5(5,1F1) 

6(0, Al) 

6(2. E ) 

6(2. F2) 

6(4. Al) 

6(4. E ) 

6(4. F2) 

6(6. Al) 

6i6, E j 

6(6,0F2) 

6(6,1f2) 

-6.4043(37) 

8.4529(46) 

-10.174(5) 

2.2600(45) 

1.7970(34) 

7.46(45) 

10.773(419) 

21.X(43) 

8.82(50) 

13.74(37) 

0.01 

3.97(16) 

3.20(98) 

-1.49(86) 

-4.46(29) 

8.4(Z) 

2.1(U) 

6.9(12) 

8.59(22) 

-4.5(17) 

-8.1(14) 

-1.233(82) 

14.1(25) 
0.X 

0.' 

-6.4037(37) 

8.4507(45) 

-10.173(5) 

2.2562(40) 

1.8010(24) 

7.20(44) 

11.487(62) 

21.86(36) 

8.42(42) 

13.70(36) 

0.0* 

3.86(15) 

4.89(7) 

0.0' 

-4.04(11) 

8.6(2) 

5.6(10) 

6.Ul.2) 

8.41(20) 

-4.7(16) 

-9.0(13) 

-1.169(56) 

9.9(2) 
0.' 

0.' 

-6.4024(36) 

8.4545(47, 

-10.176(6) 

2.2633(42) 

1.7914(24) 

7.22(46) 

9.385(75) 

20.89(39) 

9.49(45) 

13.63(30) 

o.o* 

4.04(16) 

0.0" 

-4.38(6) 

-5.34(3.2) 

9.3(Z) 

-4.1(10, 

7.6(12) 

B.BB(Z1) 

-5.7(17) 

-6.9(14) 

-1.529(59) 

22.3(2) 

0.* 

0.* 

1 x lo-2cm-1 

I -3 -I 
x10 cm 

j 

x 10-6cm1 

x lo-7cm1 

-9 -1 
x10 cm 

0 0.0030 0.0030 0.0032 
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condition (11) since b5(5Y’F1) N 0.027 is accidentally small. These proposals are confirmed 
by actual results of associated fits (Table VI). 

(iv) Sixth order (q2J6 terms): Three of the seven parameters t6’2,E), tq2’F2), t6(4,E), 
pWz), pWW, t6(6,0F2), and pX6.W2) can be removed. However, not any set of three is 
admissible. For example, t6(2,E) and t6(2,F2) cannot be removed simultaneously. Simi- 
larly, all sixth-rank parameters cannot be removed simultaneously. 

We suggest the removal from the effective Hamiltonian of the following five terms 
up to the sixth order: t 4(4,F2) t5W% t6(2,E), t6(6,Ef, and tfXWJ~2) 

The resulting reduced Hamiltonian contains 22 unambiguous parameters up to the 
sixth order, instead of 27 parameters in usual expansions. The parameters obtained 
by fitting the y4 band of ‘*CH4 using this reduced Hamiltonian are listed in Table VII. 

VI. CONCLUSION 

The processing of experimental p4 energy levels of 12CH4 performed in this paper 
confirms the propositions of Refs. (1, 2) in the case of higher order q2J5 and q2J6 
diagonal coupling parameters. Just like q2J4 parameters (3), q2J5 and q2J6 parameters 
cannot be considered altogether as constants having definite values for a given F2 
vibrational state. 

All the phenomenological conclusions presented in detail in Ref. (3) can be applied 
to the present case. The easiest way to overcome ambiguities in effective Hamiltonians 
is to reduce them by removing free parameters. Another way is to define invariant 
parameters by forming appropriate linear combinations of the usual parameters. Of 
course, these conclusions are equally valid for other formalisms subject to a careful 
calculation of the effect of ambiguities in each particular case as illustrated in the 
Appendix of Ref. (3). 

TABLE VI 

Influence of the Elimination of Different g*J Terms from a Hamiltonian on the Accuracy of Fits 
(Case limp, = 6, J,, = 13) 

5(K:,nT) 

Alit 

Eliminated terms 

alusted 

S(S.OP1) 5C3.q) 5(5.1P~) 5C1.111) 

-3 -1 

oinlo cm 3.0 3.0 3.2 5.0 6.2 

N adjusted 4 3 3 3 3 

Different types Of d constant reduction 

reduction amall not 

allOW& 
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TABLE VII 

Fitted Parameters of Unreduced and Reduced Effective Sixth-Order Hamiltonians for v4 of ‘%ZH, 

O(O. Al, 

l(1. Pl) 

2(0. Al) 

2(2. E ) 

7x2. P2) 

3(1, Pl) 

3(3. Fl) 

4(0, Al> 

4(4, Al) 

4(2, E ) 
4(2, PZ) 

4(4. E) 
4(4. P2) 

5(1. Pl) 

5(3. Pl) 
5(5,OPl) 

5(5,lFl) 

6(0, Al) 

6(2. E ) 

6(2, PC?) 

6(4. Al) 

6(4. E 1 

6(4. PZ) 

6(6. Al) 

6(6, E: 1 
6(6,OPZ) 

6(6,lm) 

1310.763(l) 

10.25713(33) 

-6.4031(36) 

8.4381(83) 

-10.169(6) 

2.2641(24) 

1.7143(46) 

7.26(46) 

21.36(260) 

l.O(lM) 

29.7(123) 

54.1(193) 

28.0(133) 

0.96(163) 

21.11(500) 

16.84(492) 

-4.98(264) 

9.2(2) 

23.1(73) 

16.1(27) 

9.22(27) 

22.7(78) 

27.4(87) 

-2.19(37> 

-29.5(116) 

33.2(75) 

-1.64(367) 

1310.763(l) 

10.25711:33) 

-6.4022(36) 

8.4396(33) 

-10.166(5) 

2.2694(29) 

1.9012(25) 

7.10(46) 

11.47(7) 

21.2(3) 

8.8(42) 

13.3(37) 

0.' 

4.46(7) 

4.66(10) 

0.' 

-3.66(6) 

9.5(2) 

0." 

U.7(6) 

S.95(16) 

o.* 

-4.7(7) 

-1.00(S) 

11.6(5) 

0.* 

2.10(53) 

x lo-2cm' 

x 10-3cm-1 

-6 -1 
x10 Cm 

x lo-7cm-l 

x zo-9cm1 

a 0.0030 0.0030 

N 27 22 

APPENDIX 1 

Using the general definition of irreducible tensor commutators 
[~rl, ~r2]f = (pl x py _ (_ lp+r2+r(p2 x Ary, 

We obtain the following expressions for the vibrational commutators in Champion’s 
notation (9): 
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The general expression has the form 

](-)r~v~~(r~) c-)~~v~~vz)]~ = (-)r~p+=2q(_ lp+r2 _ (_ l)r]m {;; g ;2)(p+~rz-~r 
1 7 

where 
0 I’=A,,E,F2 

$4 = 
1 r=Al,F,. 

APPENDIX 2 

Using the general definition of irreducible tensor anticommutators, 

[Ar’ 9 Br21r = (A” X Br2)r + (-1) + 
rl+r2+r(p2 x Afl)r_ 

The leading contributions to rotational “anticommutators” are given by 

[R5’5,F2’, R’(kh,]f = _ ~6(4,E) 

[R5’3,“‘, Rl(l,Fl)]F = 3 

APPENDIX 3: HIGHER ORDER CONTRIBUTIONS TO q2.J4 AND #J’ TERMS 

The second transformation (5) results in the contributions to q2J4 terms via the 
commutator of the type [V, V’]+[R, R’]_ [see the last term in Eq. (7) of the Ref. (2)]: 

&4(4bl) - !!? S4(4,Fl)tl(1,h) - 

9 
(A3.1) 

1 
&4(+2) = _ 

d 
7 SW,F~)t I(I,FI) 

3 2 
(A3.2) 

~ft’4.E) _ 2\/i;T Sq4,Fl)t1(IJ~) 

9 
(A3.3) 

~f%F2) = At4(2>E) = &q”AI) = 0. (A3.4) 
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The resulting changes in q2J4-type parameters (A3.1)-(A3.4) have to be two orders 
less than the associated changes At 4(W) = (fi’/7)&Kr)~W~~Z)t i(iJl) induced by the first 

transformation (4) if the condition s 3(3~F*) G X6 [see Refs. (2, 3)] and the condition 
( 11) are satisfied. Formally one could use the transformation (5) in order to eliminate 
one more term from the q2J4 part of the Hamiltonian by appropriate choice of 
~~~~~~~~ in Eqs. (A3.1)-(A3.3). However, it would violate the condition (11) and results 
in a deterioration of a quality of a fit [see Table VIII of Ref. (3)]. The more consistent 
way is to use the procedure of the reduction which does not result in a reordering of 
the Hamiltonian expansion and does not worsen its convergence as is discussed in 
Refs. (2, 3) and in Section V. 

The validity of Eqs. (A3.1)-(A3.4) may be verified using the results of the fits of 
experimental data presented in the Table II. Let us consider two effective Hamihonians 
corresponding to any two columns of the Table II. These Hamiltonians are equivalent 
since c in both cases is practically the same. In order to relate them up to fifth-order 
terms, one needs two unitary transformations. of the types (5) and (4). The associated 
parameters s 3(3~F2) and s~(~*~*) are the solutions of the following equations: 

I5 At‘W’Z) = - s 

2fi 
3(3.F+ I(I,FI) + Ir? SW,Fdt l(lJ’l) + . . . = 

3ti 
0 (A3.5) 

&S’S,OF’) = 1. 
3 d 

; K;;, ;, oSF)lpWOtNWI) + . . . = constant. (A3.6) 

The transformation involving s q4~F’) has been discussed in Section II. It follows 
from Eq. (A3.5) that a variation At5(5’oF’) and the requirement At4’4TF2’ = 0 result in 
auxiliary fifth-order transformation of the type (2) with the parameter 

sWJ2) = _ 14@Wl)/(fi J’;;, ;, &~WI)) - ~8. (A3.7) 

The sixth-order contributions of the latter transformation to q2J5 terms are presented 
as corrections in Eqs. ( 13b). 

Both transformations provide fifth-order contributions to q2J4 terms. Associated 
variations of the parameters may be written as 

&4(“r) = eqK,r)&%F1) (A3.8) 

where the calculated coefficients e4(Kr) are the following: 

P4A1) = 4v5( K3K$, ;, 05F)I)) (A3.9) 

(A3.10) 

(A3.11) 

&?4(4,E) = e4(oPl) = 0. (A3.12) 

The results of processing of experimental v4 data for i2CH4 presented in Table II 
are in agreement with Eqs. (A3.8)-(A3.12). The values of fitted tqKr) parameters 
displayed in the Table II with reasonable accuracy obey linear equations of the type 
(A3.8). The comparison of theoretical and “experimental” values of eqKr) coefficients 
is presented in the Table VIII. 
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TABLE VIII 

Comparison of Theoretical Values of e wr) Constants with These Deduced from the Fits 
of Experimental v4 Enevy Levels of 12CH4 

Theoretical.Eqs.(A3.9)-(A3.12) DBduCed from Table II 

4(4.A2) 4.29 4.6 
e 

(3) 

4t2.E) 
e 2.35 3.1 (9) 

4(2.~~) 
e - 2.35 - 3.3 (E) 

4(4,E) 
e 0 - 0.5 (10) 

4('+) 
e 0 0.0 (8) 

Note that in Tables I and II, we examine the behavior of parameters in the wide 
region which is larger than an interval allowed by order-of-magnitude considerations. 
The distinction in t5(S,oF1) between left and right sets is At5(5,0F’) = 2 X lOa cm-‘. 
According to the Amat-Nielsen ordering scheme, one should consider At5’Kr’ 
N t5’Kn N x’Ow N 10-7 cm-’ , otherwise the condition (11) should be violated. Within 
an allowed interval restricted by two nearby sets of Table II, the variations in fitted 
values of tqKr) parameter are not important, as should be expected from the general 
scheme of the reduction (2). 
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